ASN1PARSE(1) OpenSSL ASN1PARSE(1)

NAME
asnlparse — ASN.1 parsing tool

SYNOPSIS
openssl asnlparsg-inform PEM [DER] [-in filenameg] [-out filenamg [-noout] [-offset numbei
[-length number] [-i] [-oid filename] [-strparse offse}

DESCRIPTION
The asnlparsecommand is a diagnostic utility that can paast.1 structures. It can also be used to
extract data fromASN.1 formatted data.

OPTIONS
—inform DEROPEM
the input formatDER is binary format an®EM (the default) is base64 encoded.

—in filename
the input file, default is standard input

-out filename
output file to place th®ER encoded data into. If this option is not present then no data will be
output. This is most useful when combined with-tk&parse option.

—noout
don’t output the parsed version of the input file.

—offset number
starting offset to begin parsing, default is start of file.

—length number
number of bytes to parse, default is until end of file.

—-i indents the output according to the “depth” of the structures.

-oid filename
a file containing additionabBJECTIDENTIFIERs (OIDs). The format of this file is described in
the NOTESsection below.

—strparse offset
parse the contents octets of #&N.1 object starting abffset. This option can be used multiple
times to “drill down” into a nested structure.

OUTPUT
The output will typically contain lines like this:
0:d=0 hl=4 |=681 cons: SEQUENCE

229:d=3 hI=3 I= 141 prim: BIT STRING

373:d=2 hI=3 |=162 cons: cont[3]

376:d=3 hl=3 |=159 cons: SEQUENCE

379:d=4 hl=2 |= 29 cons: SEQUENCE

381:d=5 hl=2 I= 3 prim: OBJECT :X509v3 Subject Key Identifier
386:d=5 hl=2 I= 22 prim: OCTET STRING

410:d=4 hl=2 I=112 cons: SEQUENCE

412:d=5 hlI=2 I= 3 prim: OBJECT :X509v3 Authority Key Identifier
417:d=5 hl=2 I=105 prim: OCTET STRING

524:d=4 hl=2 |= 12 cons: SEQUENCE

This example is part of a self signed certificate. Each line starts with the offset in dded¥alspeci-
fies the current depth. The depth is increased within the scope 8Eamy SEQUENCE hl=XX gives
the header length (tag and length octets) of the current ity}¥. gives the length of the contents
octets.

The—i option can be used to make the output more readable.

0.9.7c 2000-01-21 1

ASN1PARSE(1) OpenSSL ASN1PARSE(1)

Some knwledge of theASN.1 structure is needed to interpret the output.

In this ekample theBIT STRING at offset 229 is the certificate public key. The contents octets of this
will contain the public key information. This can be examined using the ofstoparse 229to yield:

0:d=0 hI=3 |=137 cons: SEQUENCE
3:d=1 hI=3 I=129 prim: INTEGER :E5D21E1F5C8D208EA7A2166C7TFAF9F6BDF20596

135:d=1 hl=2 |= 3 prim: INTEGER :010001

NOTES
If an OID is not part of OpenSSL’s internal table it will be represented in numerical form (for example
1.2.3.4). The file passed to theid option allows additional OIDs to be included. Each line consists of
three columns, the first column is tBéD in numerical format and should be followed by white space.
The second column is the “short name” which is a single word followed by white space. The final col-
umn is the rest of the line and is the “long nam&snlparsedisplays the long name. Example:

1.2.34 shortName A long name

BUGS
There should be options to change the format of input lines. The output ofaginietypes is not

well handled (if at all).

2 2000-01-21 0.9.7c

CA(2) OpenSSL CA(2)

NAME
ca — sample minimal CA application

SYNOPSIS
openssl cal[-verbosq [—config flenamé [-name sectioh [—-gencrl] [-revoke file] [-crl_reason
reason] [-crl_hold instruction] [—crl_compromise timg [—crl_CA_compromise timg [-subj arg]
[-crldays dayq [—crlhours hours] [—crlexts sectior} [-startdate datd [-enddate daté¢[—-days arg]
[-md arg] [—policy arg] [-keyfile arg] [-key arg] [-passin ard [—cert file] [-in file] [-out file]
[-notext] [—outdir dir] [—infiles] [-spkac fild [-ss_cert fil§ [-preserveDN [—-noemailDN]
[-batch] [-msie_hack] Fextensions sectiof —extfile section [-engine id

DESCRIPTION
Thecacommand is a minimatA application. It can be used to sign certificate requests in a variety of
forms and generate CRLs it also maintains a text database of issued certificates and their status.

The options descriptions will be divided into each purpose.

CA OPTIONS
—config filename
specifies the configuration file to use.

—name section
specifies the configuration file section to use (overmgdsult cain thecasection).

—in filename
an input filename containing a single certificate request to be signed @4.the

—-ss_cert filename
a single self signed certificate to be signed byahe

—spkac filename
a file containing a single Netscape signed public key and challenge and additional field values to
be signed by theA. See theSPKAC FORMAT section for information on the required format.

—infiles
if present this should be the last option, all subsequent arguments are assumed to the the names of
files containing certificate requests.

—out filename
the output file to output certificates to. The default is standard output. The certificate details will
also be printed out to this file.

—outdir directory
the directory to output certificates to. The certificate will be written to a filename consisting of the
serial number in hex with “.pem” appended.

—cert
the CA certificate file.

—keyfile filename
the private key to sign requests with.

—key password
the password used to encrypt the private key. Since on some systems the command line arguments
are visible (e.g. Unix with the 'ps’ utility) this option should be used with caution.

—passin arg
the key password source. For more information about the fornatyaee thePASS PHRASE
ARGUMENTS section inopenss(1).

-verbose
this prints extra details about the operations being performed.

—notext
don’t output the text form of a certificate to the output file.

0.9.7c 2003-07-03 3

CA(2) OpenSSL CA(2)

—startdate date
this allows the start date to be explicitly set. The format of the datéeMsMDDHHMMSSZ (the
same as aASN1 UTCTime structure).

—enddate date
this allows the expiry date to be explicitly set. The format of the dateN®/DDHHMMSSZ (the
same as aASN1 UTCTime structure).

—days arg
the number of days to certify the certificate for.

-md alg
the message digest to use. Possible values include md5, shal and mdc2. This option also applies
to CRLs.

—policy arg
this option defines theA “policy” to use. This is a section in the configuration file which decides
which fields should be mandatory or match @#ecertificate. Check out theOLICY FORMAT
section for more information.

—-msie_hack
this is a legacy option to makawork with very old versions of th& certificate enrollment con-
trol “certenr3”. It used UniversalStrings for almost everything. Since the old control has various
security bugs its use is strongly discouraged. The newer control “Xenroll” does not need this
option.

—preserveDN
Normally theDN order of a certificate is the same as the order of the fields in the relevant policy
section. When this option is set the order is the same as the request. This is largely for compatibil-
ity with the olderlE enrollment control which would only accept certificates if their DNs match
the order of the request. This is not needed for Xenroll.

—-noemailDN
The DN of a certificate can contain tleMAIL field if present in the requeBiN, however it is
good policy just having the e—-mail set into the altName extension of the certificate. When this
option is set th&MAIL field is removed from the certificate’ subject and set only in the, eventu-
ally present, extensions. Tlkenail_in_dn keyword can be used in the configuration file to enable
this behaviour.

—batch
this sets the batch mode. In this mode no questions will be asked and all certificates will be certi-
fied automatically.

—extensions section
the section of the configuration file containing certificate extensions to be added when a certificate
is issued (defaults ®509 extensionainless the-extfile option is used). If no extension section
is present then, a V1 certificate is created. If the extension section is present (even if it is empty),
then a V3 certificate is created.

—extfile file
an additional configuration file to read certificate extensions from (using the default section unless
the—extensionsoption is also used).

—engine id
specifying an engine (by it's unique string) will causaeq to attempt to obtain a functional ref-
erence to the specified engine, thus initialising it if needed. The engine will then be set as the
default for all available algorithms.

CRL OPTIONS
—gencrl
this option generatesGRL based on information in the index file.

—crldays num
the number of days before the n€RL is due. That is the days from now to place inGiRe. nex-
tUpdate field.

4 2003-07-03 0.9.7c

CA(1)

OpenSSL CA(1)

—crlhours num
the number of hours before the neRL is due.

-revoke filename
a filename containing a certificate to revoke.

—crl_reason reason
revocation reason, whereasonis one of:unspecified keyCompromise CACompromise, affil-
iationChanged, superseded cessationOfOperation certificateHold or removeFromCRL. The
matching ofreasonis case insensitive. Setting any revocation reason will makeRhe2.

In practiveremoveFromCRL is not particularly useful because it is only used in delta CRLs
which are not currently implemented.

—crl_hold instruction
This sets theRL revocation reason code tertificateHold and the hold instruction tmstruc-
tion which must be a@ID. Although anyOID can be used onlgoldinstructionNone (the use of
which is discouraged bgFC2459 holdinstructionCalllssuer or holdInstructionReject will nor-
mally be used.

—crl_compromise time
This sets the revocation reasorkeyCompromiseand the compromise time tione. time should
be in GeneralizedTime format thatyi$YYMMDDHHMMSSZ .

—crl_CA_compromise time
This is the same asl_compromiseexcept the revocation reason is seE&Compromise.

-subj arg
supersedes subject name given in the request. The arg must be formatted as
ltypeO=valueO/typel=valuel/type2s.characters may be escaped by \ (backslash), no spaces are
skipped.

—crlexts section
the section of the configuration file containibgL extensions to include. If NORL extension sec-
tion is present then a VERL is created, if theCRL extension section is present (even if it is
empty) then a VZRL is created. Th€RL extensions specified a@RL extensions andot CRL
entry extensions. It should be noted that some software (for example Netscape) can't handle V2
CRLs.

CONFIGURATION FILE OPTIONS

0.9.7c

The section of the configuration file containing optionscépis found as follows: If the-name com-

mand line option is used, then it names the section to be used. Otherwise the section to be used must be
named in thedefault_caoption of theca section of the configuration file (or in the default section of

the configuration file). Besidekefault_ca, the following options are read directly from taesection:

RANDFILE

preserve

msie_hack With the exception &fANDFILE, this is probably a bug and may change in future
releases.

Many of the configuration file options are identical to command line options. Where the option is
present in the configuration file and the command line the command line value is used. Where an
option is described as mandatory then it must be present in the configuration file or the command line
equivalent (if any) used.

oid_file
This specifies a file containing additiom@BJECT IDENTIFIERS . Each line of the file should
consist of the numerical form of the object identifier followed by white space then the short name
followed by white space and finally the long name.

oid_section
This specifies a section in the configuration file containing extra object identifiers. Each line

should consist of the short name of the object identifier followed bpd the numerical form.
The short and long names are the same when this option is used.

2003-07-03 5

CA(1)

OpenSSL CA(1)

new_certs_dir
the same as theoutdir command line option. It specifies the directory where new certificates will
be placed. Mandatory.

certificate
the same ascert. It gives the file containing theA certificate. Mandatory.

private_key
same as thekeyfile option. The file containing th@A private key. Mandatory.

RANDFILE
a file used to read and write random number seed information, OEGEN soclet (see
RAND_egq3)).

default_days
the same as thedaysoption. The number of days to certify a certificate for.

default_startdate

the same as thestartdate option. The start date to certify a certificate for. If not set the current
time is used.

default_enddate
the same as theenddateoption. Either this option adefault_days(or the command line equiv-
alents) must be present.

default_crl_hours default_crl_days
the same as thecrlhours and the-crldays options. These will only be used if neither command
line option is present. At least one of these must be present to generate a

default_md
the same as themd option. The message digest to use. Mandatory.

database
the text database file to use. Mandatory. This file must be present though initially it will be empty.

serial
a text file containing the next serial number to use in hex. Mandatory. This file must be present
and contain a valid serial number.

x509_extensions
the same asextensions.

crl_extensions
the same ascrlexts.

preserve
the same aspreserveDN

email_in_dn
the same asnoemailDN. If you want theEMAIL field to be removed from theN of the certifi-
cate simply set this to 'no’. If not present the default is to allow foEMAIL filed in the certifi-
cate'sDN.

msie_hack
the same asmsie_hack

policy
the same aspolicy. Mandatory. See theOLICY FORMAT section for more information.

nameopt certopt
these options allow the format used to display the certificate details when asking the user to con-
firm signing. All the options supported by th&09 utilities —-nameoptand—certopt switches can
be used here, except the_signameandno_sigdumpare permanently set and cannot be disabled
(this is because the certificate signature cannot be displayed because the certificate has not been
signed at this point).

For convenience the valuea_defaultare accepted by both to produce a reasonable output.

If neither option is present the format used in earlier versions of OpenSSL is used. Use of the old
format isstrongly discouraged because it only displays fields mentioned ipdhey section,

2003-07-03 0.9.7c

CA(1)

OpenSSL CA(1)

mishandles multicharacter string types and does not displegstons.

copy_extensions
determines how extensions in certificate requests should be handled. Iheaetr this option
is not present then extensions are ignored and not copied to the certificate. togsttten any
extensions present in the request that are not already present are copied to the certificate. If set to
copyall then all extensions in the request are copied to the certificate: if the extension is already
present in the certificate it is deleted first. SeeMRRNINGS section before using this option.

The main use of this option is to allow a certificate request to supply values for certain extensions
such as subjectAltName.

POLICY FORMAT

The policy section consists of a set of variables corresponding to certifigdields. If the value is
“match” then the field value must match the same field inGhecertificate. If the value is “supplied”

then it must be present. If the value is “optional” then it may be present. Any fields not mentioned in
the policy section are silently deleted, unless-theeserveDNoption is set but this can be regarded
more of a quirk than intended behaviour.

SPKAC FORMAT

The input to the-spkaccommand line option is a Netscape signed public key and challenge. This will
usually come from thBEYGEN tag in anHTML form to create a new private key. Itis however possi-
ble to create SPKACs using thpkac utility.

The file should contain the variab®®KAC set to the value of thBPKAC and also the requiredN
components as name value pairs. If you need to include the same component twice then it can be pre-
ceded by a numberand a’..

EXAMPLES

0.9.7c

Note: these examples assume thatdhelirectory structure is already set up and the relevant files
already exist. This usually involves creating/ certificate and private key witteq, a serial number
file and an empty index file and placing them in the relevant directories.

To use the sample configuration file below the directories demoCA, demoCA/private and
demoCA/newcerts would be created. Thecertificate would be copied to demoCA/cacert.pem and its
private key to demoCA/private/cakey.pem. A file demoCA/serial would be created containing for
example “01” and the empty index file demoCA/index.txt.

Sign a certificate request:
openssl ca -in reg.pem -out newcert.pem
Sign a certificate request, usiag extensions:
openssl ca -in reqg.pem -extensions v3_ca -out newcert.pem
Generate €RL
openssl ca -gencrl -out crl.pem
Sign several requests:
openssl ca -infiles reql.pem req2.pem req3.pem
Certify a Netscap8PKAC:
openssl ca -spkac spkac.txt
A sampleSPKACfile (theSPKACIine has been truncated for clarity):

SPKAC=MIGOMGAwWXDANBgkghkiGOWOBAQEFAANLADBIAKEAN7PDhCeV/xIxUg8V70YRXK2A5
CN=Steve Test

emailAddress=steve@openssl.org

0.0U=0penSSL Group

1.0U=Another Group

A sample configuration file with the relevant sectionsctar

[ca]
default_ca = CA_default # The default ca section

2003-07-03 7

CA(2) OpenSSL CA(2)

[CA default]

dir = ./demoCA # top dir

database = $dir/index.txt # index file.

new_certs_dir = $dir/newcerts # new certs dir

certificate = $dir/cacert.pem # The CA cert

serial = $dir/serial # serial no file

private_key = S$dir/private/cakey.pem# CA private key

RANDFILE = $dir/private/.rand # random number file
default_days = 365 # how long to certify for
default_crl_days= 30 # how long before next CRL
default_md = md5 # md to use

policy = policy_any # default policy

email_in_dn = no # Don’t add the email into cert DN
nameopt = ca_default # Subject name display option
certopt = ca_default # Certificate display option
copy_extensions = none # Don’t copy extensions from request
[policy_any]

countryName = supplied

stateOrProvinceName = optional

organizationName = optional

organizationalUnitName = optional

commonName = supplied

emailAddress = optional

FILES
Note: the location of all files can change either by compile time options, configuration file entries, envi-
ronment variables or command line options. The values below reflect the default values.

lusr/local/ssl/lib/openssl.cnf - master configuration file

JdemoCA - main CA directory
.JdemoCA/cacert.pem - CA certificate
.JdemoCA/private/cakey.pem - CA private key

JdemoCA/serial - CA serial number file
.JdemoCA/serial.old - CA serial number backup file
JdemoCA/index.txt - CA text database file
.JdemoCA/index.txt.old - CA text database backup file
JdemoCA/certs - certificate output file
.JdemoCA/.rd - CA random seed information

ENVIRONMENT VARIABLES
OPENSSL_CONFreflects the location of master configuration file it can be overridden byctidig
command line option.

RESTRICTIONS
The text database index file is a critical part of the process and if corrupted it can be difficult to fix. It is
theoretically possible to rebuild the index file from all the issued certificates and a @Rtetow-
ever there is no option to do this.

V2 CRL features like delt&RL support ancCRL numbers are not currently supported.

Although several requests can be input and handled at once it is only possible to inclsegADer
self signed certificate.

BUGS
The use of an in memory text database can cause problems when large numbers of certificates are
present because, as the name implies the database has to be kept in memory.

It is not possible to certify two certificates with the sabne this is a side effect of how the text data-
base is indexed and it cannot easily be fixed without introducing other problems. Some S/MIME clients
can use two certificates with the sabne for separate signing and encryption keys.

The cacommand really needs rewriting or the required functionality exposed at either a command or

8 2003-07-03 0.9.7c

CA(2) OpenSSL CA(2)

interface level so a more friendly utility (perl script GuI) can handle things properly. The scripts
CA.shandCA.pl help a little but not very much.

Any fields in a request that are not present in a policy are silently deleted. This does not happen if the
—preserveDNoption is used. To enforce the absence oftfalL field within theDN, as suggested by

RFCs, regardless the contents of the request’ subjeentiemailDN option can be used. The behav-

iour should be more friendly and configurable.

Cancelling some commands by refusing to certify a certificate can create an empty file.
WARNINGS
Thecacommand is quirky and at times downright unfriendly.

The ca utility was originally meant as an example of how to do things@alt was not supposed to
be used as a full blow®@A itself: nevertheless some people are using it for this purpose.

The ca command is effectively a single user command: no locking is done on the various files and
attempts to run more than oo@command on the same database can have unpredictable results.

The copy_extensionsption should be used with caution. If care is not taken then it can be a security
risk. For example if a certificate request contains a basicConstraints extensi@AWRUE and the
copy_extensionwalue is set teopyall and the user does not spot this when the certificate is displayed
then this will hand the requestor a valid certificate.

This situation can be avoided by settoapy_ extensiongo copy and including basicConstraints with
CA:FALSE in the configuration file. Then if the request contains a basicConstraints extension it will be
ignored.

It is advisable to also include values for other extensions su@yblsageto prevent a request supply-
ing its own values.

Additional restrictions can be placed on @ certificate itself. For example if theA certificate has:
basicConstraints = CA:TRUE, pathlen:0
then even if a certificate is issued witiA: TRUE it will not be valid.

SEE ALSO
req(1), spkaql), x509(1), CA.pl (1), config(5)

0.9.7c 2003-07-03 9

CA.PL(1) OpenSSL CA.PL(1)

NAME
CA.pl - friendlier interface for OpenSSL certificate programs

SYNOPSIS
CA.pl [-?] [-h] [-help] [-newcert] [-newreq] [-newreq—node§[—-newcd [—xsign] [—sign] [—sign-
req] [—signcert] [-verify] [files]

DESCRIPTION
TheCA.pl script is a perl script that supplies the relevant command line argumentopetissicom-
mand for some common certificate operatioliss intended to simplify the process of certificate cre-
ation and management by the use of some simple options.

COMMAND OPTIONS
?,—h, —help
prints a usage message.

—-newcert
creates a new self signed certificate. The private key and certificate are written to the file
“newred.pem”.

-newreq
creates a new certificate request. The private key and request are written to the file “newreq.pem”.

—newreg-nowdes
is like —newreq except that the private key will not be encrypted.

-newca
creates a newA hierarchy for use with thea program (or the-signcert and —xsign options).
The user is prompted to enter the filename ofChAecertificates (which should also contain the
private key) or by hittingENTER details of theCA will be prompted for. The relevant files and
directories are created in a directory called “demoCA’ in the current directory.

—pkcs12
create a PKCS#12 file containing the user certificate, private ke@Andrtificate. It expects the
user certificate and private key to be in the file “newcert.pem” andCtheertificate to be in the
file demoCA/cacert.pem, it creates a file “newcert.p12”. This command can thus be called after
the —sign option. The PKCS#12 file can be imported directly into a browser. If there is an addi-
tional argument on the command line it will be used as the “friendly name” for the certificate
(which is typically displayed in the browser list box), otherwise the name “My Certificate” is
used.

—sign, —signreq, —xsign
calls the ca program to sign a certificate request. It expects the request to be in the file
“newreq.pem”. The new certificate is written to the file “newcert.pem” except in the case of the
—xsignoption when it is written to standard output.

-signCA
this option is the same as theignreq option except it uses the configuration file sectiBnca

and so makes the signed request a W@liccertificate. This is useful when creating intermediate
CA from a rootCA.

—signcert
this option is the same asign except it expects a self signed certificate to be present in the file
“newred.pem”.

-verify
verifies certificates against tloa certificate for “demoCA’. If no certificates are specified on the
command line it tries to verify the file “newcert.pem”.

files
one or more optional certificate file names for use with-tlegify command.

EXAMPLES
Create &CA hierarchy:

10 2001-01-11 0.9.7c

CA.PL(1) OpenSSL CA.PL(1)

CA.pl -newca

Complete certificate creatioxample: create @A, create a request, sign the request and finally create
a PKCS#12 file containing it.

CA.pl -newca
CA.pl -newreq
CA.pl -signreq
CA.pl -pkcs12 "My Test Certificate"

DSA CERTIFICATES
Although theCA.pl createlRSA CAs and requests it is still possible to use it vii#A certificates and
requests using theq(l) command directly. The following example shows the steps that would typi-
cally be taken.

Create some®SA parameters:
openssl| dsaparam -out dsap.pem 1024
Create @SA CA certificate and private key:
openssl req -x509 -newkey dsa:dsap.pem -keyout cacert.pem -out cacert.pem
Create thecA directories and files:
CA.pl -newca
enter cacert.pem when prompted for ¢#efile name.
Create &DSA certificate request and private key (a different set of parameters can optionally be created
first):
openssl req -out newreq.pem -newkey dsa:dsap.pem
Sign the request:
CA.pl -signreq

NOTES
Most of the filenames mentioned can be modified by editingAhgl script.

If the demoCA directory already exists then theewcacommand will not overwrite it and will do
nothing. This can happen if a previous call using-thewcaoption terminated abnormally. To get the
correct behaviour delete the demoCA directory if it already exists.

Under some environments it may not be possible to rughgl script directly (for example Win32)
and the default configuration file location may be wrong. In this case the command:

perl -S CA.pl
can be used and tl®PENSSL_CONFenvironment variable changed to point to the correct path of the
configuration file “openssl.cnf”.

The script is intended as a simple front end forofkensslprogram for use by a beginner. Its behaviour
isn't always what is wanted. For more control over the behaviour of the certificate commands call the
openssicommand directly.

ENVIRONMENT VARIABLES
The variableOPENSSL_CONFif defined allows an alternative configuration file location to be speci-
fied, it should contain the full path to the configuration file, not just its directory.

SEE ALSO
x509(1), ca(1), req(1), pkcs121), config(5)

0.9.7c 2001-01-11 11

CIPHERS(1) OpenSsSL CIPHERS(1)

NAME
ciphers — SSL cipher display and cipher list tool.

SYNOPSIS
openssl cipherd—-v] [-sslI2] [-ssI3 [-tIs1] [cipherlist]

DESCRIPTION
Thecipherlist command converts OpenSSL cipher lists into ordé&dcipher preference lists. It can
be used as a test tool to determine the appropriate cipherlist.

COMMAND OPTIONS
—-v verbose option. List ciphers with a complete description of protocol version (SSLv2 or SSLv3; the
latter includesTLS), key exchange, authentication, encryption and mac algorithms used along with
any key size restrictions and whether the algorithm is classed as an “export” cipher. Note that
without the—v option, ciphers may seem to appear twice in a cipher list; this is when similar
ciphers are available f@SLv2 and forSSLV3/TLS v1.

-ssl3
only includeSsLv3 ciphers.

-ssl2
only includeSSsLv2 ciphers.

—tls1

only includeTLS v1 ciphers.
~h, -?

print a brief usage message.
cipherlist

a cipher list to convert to a cipher preference list. If it is not included then the default cipher list
will be used. The format is described below.

CIPHER LIST FORMAT
The cipher list consists of one or maipher stringsseparated by colons. Commas or spaces are also
acceptable separators but colons are normally used.

The actual cipher string can take several different forms.
It can consist of a single cipher suite suciR@g-SHA.

It can represent a list of cipher suites containing a certain algorithm, or cipher suites of a certain type.
For exampleSHAL represents all ciphers suites using the digest algosthal andSSLv3represents
all SSLv3 algorithms.

Lists of cipher suites can be combined in a single cipher string usingctheracter. This is used as a
logical and operation. For exampl8HA1+DES represents all cipher suites containing g1 and
theDESalgorithms.

Each cipher string can be optionally preceded by the characteos +.

If !is used then the ciphers are permanently deleted from the list. The ciphers deleted can never reap-
pear in the list even if they are explicitly stated.

If —is used then the ciphers are deleted from the list, but some or all of the ciphers can be added again
by later options.

If +is used then the ciphers are moved to the end of the list. This option doesn’t add any new ciphers it
just moves matching existing ones.

If none of these characters is present then the string is just interpreted as a list of ciphers to be
appended to the current preference list. If the list includes any ciphers already present they will be
ignored: that is they will not moved to the end of the list.

Additionally the cipher string@ STRENGTH can be used at any point to sort the current cipher list in
order of encryption algorithm key length.

12 2002-12-29 0.9.7c

CIPHERS(1) OpenSsSL CIPHERS(1)

CIPHER STRINGS
The following is a list of all permitted cipher strings and their meanings.

DEFAULT
the default cipher list. This is determined at compile time and is normally
ALL: 'ADH:RC4+RSA:+SSLv2: @STRENGTH. This must be the first cipher string specified.

COMPLEMENTOFDEFAULT
the ciphers included iALL , but not enabled by default. Currently thissiBH. Note that this rule
does not coveeNULL, which is not included byLL (useCOMPLEMENTOFALL if necessary).

ALL
all ciphers suites except te&lULL ciphers which must be explicitly enabled.

COMPLEMENTOFALL
the cipher suites not enabled AL , currently beingeNULL.

HIGH
“high” encryption cipher suites. This currently means those with key lengths larger than 128 bits.

MEDIUM
“medium” encryption cipher suites, currently those using 128 bit encryption.

LOW
“low” encryption cipher suites, currently those using 64 or 56 bit encryption algorithms but
excluding export cipher suites.

EXP, EXPORT
export encryption algorithms. Including 40 and 56 bits algorithms.

EXPORT40
40 bit export encryption algorithms

EXPORT56
56 bit export encryption algorithms.

eNULL, NULL
the “NULL" ciphers that is those offering no encryption. Because these offer no encryption at all
and are a security risk they are disabled unless explicitly included.

aNULL
the cipher suites offering no authentication. This is currently the anonybioalkgorithms. These

cipher suites are vulnerable to a “man in the middle” attack and so their use is normally discour-
aged.

kRSA, RSA
cipher suites usingSA key exchange.

kEDH
cipher suites using ephemerd key agreement.

kDHr , kDHd
cipher suites usin@H key agreement andH certificates signed by CAs witRSA andDSSkeys
respectively. Not implemented.

aRSA
cipher suites usinBSA authentication, i.e. the certificates caRgA keys.
aDSS DSS
cipher suites usinpSSauthentication, i.e. the certificates cabngSkeys.
abDH
cipher suites effectively usingH authentication, i.e. the certificates caby keys. Not imple-
mented.

KFZA, aFZA, eFZA, FzZA
ciphers suites usingORTEZZA key exchange, authentication, encryption orF@IRTEZZA algo-
rithms. Not implemented.

0.9.7c 2002-12-29 13

CIPHERS(1)

OpenSSL

TLSv1, SSLv3,SSLv2

CIPHERS(1)

TLSVv1.0,SSLVv3.0 orSSLV2.0 cipher suites respectively.

DH cipher suites usinBH, including anonymouBH.

ADH
anonymou®H cipher suites.

AES
cipher suites usingES.

3DES
cipher suites using tripleES.
DES
cipher suites usinDES (not tripleDES).

RC4
cipher suites usingCa.

RC2
cipher suites usingC2

IDEA
cipher suites usintpEA.

MD5
cipher suites usingID5.

SHA1, SHA
cipher suites usingHAL

CIPHER SUITE NAMES

14

The following lists give thesSL or TLS cipher suites names from the relevant specification and their
OpenSSL equivalents. It should be noted, that several cipher suite names do not include the authentica-

tion used, e.gDES-CBC3-SHA In these casef®SA authentication is used.

SSLv3.0 cipher suites.

SSL_RSA_WITH_NULL_MD5
SSL_RSA_WITH_NULL_SHA
SSL_RSA_EXPORT_WITH_RC4_40_MD5
SSL_RSA_WITH_RC4 128 _MD5
SSL_RSA_WITH_RC4_128 SHA
SSL_RSA_EXPORT_WITH_RC2_CBC_40_MD5
SSL_RSA_WITH_IDEA_CBC_SHA
SSL_RSA_EXPORT_WITH_DES40_CBC_SHA
SSL_RSA_WITH_DES_CBC_SHA
SSL_RSA_WITH_3DES_EDE_CBC_SHA

SSL_DH_DSS_EXPORT_WITH_DES40_CBC_SHA
SSL_DH_DSS_WITH_DES_CBC_SHA
SSL_DH_DSS_WITH_3DES_EDE_CBC_SHA
SSL_DH_RSA_EXPORT_WITH_DES40_CBC_SHA
SSL_DH_RSA_WITH_DES_CBC_SHA
SSL_DH_RSA_WITH_3DES_EDE_CBC_SHA
SSL_DHE_DSS_EXPORT_WITH_DES40_CBC_SHA
SSL_DHE_DSS_WITH_DES_CBC_SHA
SSL_DHE_DSS_WITH_3DES_EDE_CBC_SHA
SSL_DHE_RSA_EXPORT_WITH_DES40_CBC_SHA
SSL_DHE_RSA_WITH_DES_CBC_SHA
SSL_DHE_RSA_WITH_3DES_EDE_CBC_SHA

2002-12-29

NULL-MD5
NULL-SHA
EXP-RC4-MD5
RC4-MD5
RC4-SHA
EXP-RC2-CBC-MD5
IDEA-CBC-SHA
EXP-DES-CBC-SHA
DES-CBC-SHA
DES-CBC3-SHA

Not implemented.

Not implemented.

Not implemented.

Not implemented.

Not implemented.

Not implemented.
EXP-EDH-DSS-DES-CBC-SHA
EDH-DSS-CBC-SHA
EDH-DSS-DES-CBC3-SHA
EXP-EDH-RSA-DES-CBC-SHA
EDH-RSA-DES-CBC-SHA
EDH-RSA-DES-CBC3-SHA

0.9.7c

CIPHERS(1) OpenSsSL CIPHERS(1)

0.9.7c

SSL_DH_anon_EXPORT_WITH_RC4_40_MD5 EXP-ADH-RC4-MD5
SSL_DH_anon_WITH_RC4_128 MD5 ADH-RC4-MD5
SSL_DH_anon_EXPORT_WITH_DES40_CBC_SHA EXP-ADH-DES-CBC-SHA
SSL_DH_anon_WITH_DES_CBC_SHA ADH-DES-CBC-SHA
SSL_DH_anon_WITH_3DES_EDE_CBC_SHA ADH-DES-CBC3-SHA
SSL_FORTEZZA_KEA_WITH_NULL_SHA Not implemented.
SSL_FORTEZZA_KEA_WITH_FORTEZZA_CBC_SHA Not implemented.
SSL_FORTEZZA_KEA_WITH_RC4_128 SHA Not implemented.

TLS v1.0 cipher suites.

TLS_RSA_WITH_NULL_MD5 NULL-MD5
TLS_RSA_WITH_NULL_SHA NULL-SHA
TLS_RSA_EXPORT_WITH_RC4_40_MD5 EXP-RC4-MD5
TLS_RSA_WITH_RC4_128 MD5 RC4-MD5
TLS_RSA_WITH_RC4_128 SHA RC4-SHA
TLS_RSA_EXPORT_WITH_RC2_CBC_40_MD5 EXP-RC2-CBC-MD5
TLS_RSA_WITH_IDEA_CBC_SHA IDEA-CBC-SHA
TLS_RSA_EXPORT_WITH_DES40_CBC_SHA EXP-DES-CBC-SHA
TLS_RSA_WITH_DES CBC_SHA DES-CBC-SHA
TLS_RSA_WITH_3DES_EDE_CBC_SHA DES-CBC3-SHA
TLS_DH_DSS _EXPORT_WITH_DES40_CBC_SHA Not implemented.
TLS_DH_DSS WITH_DES_CBC_SHA Not implemented.

TLS _DH _DSS WITH_3DES_EDE_CBC_SHA Not implemented.
TLS_DH_RSA _EXPORT_WITH_DES40_CBC_SHA Not implemented.

TLS DH_RSA WITH_DES _CBC_SHA Not implemented.

TLS DH_RSA WITH_3DES_EDE_CBC_SHA Not implemented.
TLS_DHE_DSS_EXPORT_WITH_DES40_CBC_SHA EXP-EDH-DSS-DES-CBC-SHA
TLS_DHE_DSS_WITH_DES_CBC_SHA EDH-DSS-CBC-SHA
TLS_DHE_DSS_WITH_3DES_EDE_CBC_SHA EDH-DSS-DES-CBC3-SHA
TLS_DHE_RSA_EXPORT_WITH_DES40_CBC_SHA EXP-EDH-RSA-DES-CBC-SHA
TLS_DHE_RSA_WITH_DES_CBC_SHA EDH-RSA-DES-CBC-SHA
TLS_DHE_RSA_WITH_3DES_EDE_CBC_SHA EDH-RSA-DES-CBC3-SHA
TLS_DH_anon_EXPORT_WITH_RC4_40_MD5 EXP-ADH-RC4-MD5
TLS_DH_anon_WITH_RC4_128 MD5 ADH-RC4-MD5
TLS_DH_anon_EXPORT_WITH_DES40_CBC_SHA EXP-ADH-DES-CBC-SHA
TLS_DH_anon_WITH_DES_CBC_SHA ADH-DES-CBC-SHA
TLS_DH_anon_WITH_3DES_EDE_CBC_SHA ADH-DES-CBC3-SHA

AES ciphersuites fromRFC3268 extendingTLS v1.0

TLS_RSA_WITH_AES_128 CBC_SHA AES128-SHA
TLS_RSA_WITH_AES_256_CBC_SHA AES256-SHA
TLS_DH_DSS_WITH_AES_128 CBC_SHA DH-DSS-AES128-SHA
TLS_DH_DSS_WITH_AES_256_CBC_SHA DH-DSS-AES256-SHA
TLS_DH_RSA_WITH_AES_128 CBC_SHA DH-RSA-AES128-SHA
TLS_DH_RSA_WITH_AES_256_CBC_SHA DH-RSA-AES256-SHA
TLS_DHE_DSS_WITH_AES_128 CBC_SHA DHE-DSS-AES128-SHA
TLS_DHE_DSS_WITH_AES_256_CBC_SHA DHE-DSS-AES256-SHA
TLS_DHE_RSA_WITH_AES_128 CBC_SHA DHE-RSA-AES128-SHA
TLS_DHE_RSA_WITH_AES_256_CBC_SHA DHE-RSA-AES256-SHA
TLS_DH_anon_WITH_AES_128 CBC_SHA ADH-AES128-SHA
TLS_DH_anon_WITH_AES_256_CBC_SHA ADH-AES256-SHA

2002-12-29 15

CIPHERS(1) OpenSsSL CIPHERS(1)

Additional Export 1024 and other cipher suites
Note: these ciphers can also be usesShv3.

TLS_RSA_EXPORT1024 WITH_DES_CBC_SHA EXP1024-DES-CBC-SHA
TLS_RSA_EXPORT1024 WITH_RC4_56_SHA EXP1024-RC4-SHA
TLS_DHE_DSS_EXPORT1024_WITH_DES_CBC_SHA EXP1024-DHE-DSS-DES-CBC-SHA
TLS_DHE_DSS_EXPORT1024 WITH_RC4 56_SHA EXP1024-DHE-DSS-RC4-SHA
TLS_DHE_DSS_WITH_RC4_128 SHA DHE-DSS-RC4-SHA

SSL V2.0 cipher suites.

SSL_CK_RC4_128 WITH_MD5 RC4-MD5
SSL_CK_RC4_128 EXPORT40_WITH_MD5 EXP-RC4-MD5
SSL_CK_RC2_128_CBC_WITH_MD5 RC2-MD5
SSL_CK_RC2_128 CBC_EXPORT40_WITH_MD5 EXP-RC2-MD5
SSL_CK_IDEA_128 CBC_WITH_MD5 IDEA-CBC-MD5
SSL_CK_DES_64_CBC_WITH_MD5 DES-CBC-MD5
SSL_CK_DES_192_EDE3_CBC_WITH_MD5 DES-CBC3-MD5
NOTES

The non-ephemeralH modes are currently unimplemented in OpenSSL because there is no support
for DH certificates.

Some compiled versions of OpenSSL may not include all the ciphers listed here because some ciphers
were excluded at compile time.

EXAMPLES
Verbose listing of all OpenSSL ciphers includigLL ciphers:

openssl ciphers -v 'ALL:eNULL’
Include all ciphers exceptuLL and anonymouBH then sort by strength:
openssl ciphers -v 'ALL:!ADH:@STRENGTH’
Include only 3DES ciphers and then pl&SA ciphers last:
openssl ciphers -v '3DES:+RSA’
Include allRC4ciphers but leave out those without authentication:
openssl ciphers -v 'RC4:!COMPLEMENTOFDEFAULT’
Include all chiphers witlRSA authentication but leave out ciphers without encryption.
openssl ciphers -v 'RSA!ICOMPLEMENTOFALL’

SEE ALSO
s_client(1), s_serve(1), ssl(3)

HISTORY
The COMPLENTOFALL and COMPLEMENTOFDEFAULT selection options were added in version
0.9.7.

16 2002-12-29 0.9.7c

CRL(1) OpenSSL CRL(1)

NAME
crl — CRL utility

SYNOPSIS
openssl crl[-infform PEMODER] [-outform PEMIDER] [-text] [=in filenamg [-out filenamd
[-noout] [-hash] [-issuel [-lastupdate] [-nextupdatd [-CAfile file] [-CApath dir]

DESCRIPTION
Thecrl command process€RL files inDER or PEM format.

COMMAND OPTIONS
—inform DEROPEM
This specifies the input forma@ER format iSDER encodedCRL structure PEM (the default) is a
base64 encoded version of ER form with header and footer lines.

—outform DERIPEM
This specifies the output format, the options have the same meaning-agdha option.

—in filename
This specifies the input filename to read from or standard input if this option is not specified.

—out filename
specifies the output filename to write to or standard output by default.

—text
print out theCRL in text form.

—noout
don’t output the encoded version of tbReL.

—hash

output a hash of the issuer name. This can be use to lookup CRLs in a directory by issuer name.
—issuer

output the issuer name.

—lastupdate
output the lastUpdate field.

—nextupdate
output the nextUpdate field.

—CAfile file
verify the signature on @RL by looking up the issuing certificatefife

—CApath dir
verify the signature on @RL by looking up the issuing certificate dir . This directory must be a
standard certificate directory: that is a hash of each subject name XG6fghash) should be
linked to each certificate.

NOTES
ThePEM CRLformat uses the header and footer lines:

EXAMPLES
Convert aCRL file from PEMto DER:

openssl crl -in crl.pem -outform DER -out crl.der
Output the text form of BER encoded certificate:
openssl crl -in crl.der -text -noout

BUGS
Ideally it should be possible to create€RL using appropriate options and files too.

0.9.7c 2000-02-08 17

CRL(1) OpenSSL CRL(1)

SEE ALSO
crli2pkes7(1), ca(1), x509(1)

18 2000-02-08 0.9.7c

CRL2PKCS7(1) OpenSSL CRL2PKCS7(1)

NAME
crl2pkcs? — Create a PKCS#7 structure from a CRL and certificates.

SYNOPSIS
openssl crl2pkcs7[-inform PEM IDER] [-outform PEMIDER] [-in filenamg [-out filenamd
[—certfile filename] [-nocrl]

DESCRIPTION
The crl2pkcs7 command takes an option@RL and one or more certificates and converts them into a
PKCS#7 dgenerate “certificates only” structure.

COMMAND OPTIONS
—inform DERCOPEM
This specifies th€RL input format.DER format iSDER encodedCRL structurePEM (the default)
is a base64 encoded version of IR form with header and footer lines.

—outform DERIPEM
This specifies the PKCS#7 structure output forrd&R format isDER encoded PKCS#7 struc-
ture PEM (the default) is a base64 encoded version ob#reform with header and footer lines.

—in filename
This specifies the input filename to readRL from or standard input if this option is not speci-
fied.

—out filename
specifies the output filename to write the PKCS#7 structure to or standard output by default.

—certfile filename
specifies a filename containing one or more certificategmn format. All certificates in the file
will be added to the PKCS#7 structure. This option can be used more than once to read certificates
form multiple files.

-nocrl
normally aCRL is included in the output file. With this option @&L is included in the output file
and aCRL is not read from the input file.

EXAMPLES
Create a PKCS#7 structure from a certificate @Rd:

openssl crl2pkes7 -in crl.pem -certfile cert.pem -out p7.pem
Creates a PKCS#7 structureDBR format with noCRL from several different certificates:

openssl crl2pkes7 -nocrl -certfile newcert.pem
-certfile demoCA/cacert.pem -outform DER -out p7.der

NOTES
The output file is a PKCS#7 signed data structure containing no signers and just certificates and an
optionalCRL.

This utility can be used to send certificates and CAs to Netscape as part of the certificate enroliment
process. This involves sending thER encoded output adIME type application/x—x509-user—cert.

ThePEM encoded form with the header and footer lines removed can be used to install user certificates
and CAs inMSIE using the Xenroll control.

SEE ALSO
pkcs7(1)

0.9.7c 2002-07-09 19

DGST(1) OpenSSL DGST(1)

NAME
dgst, md5, md4, md2, shal, sha, mdc2, ripemd160 — message digests

SYNOPSIS
openssl dgst [-md503-md4-md2=shall@3shaEmdc20-ripemd160+dss] [-c] [-d] [-heX
[-binary] [—out filename] [-sign filenam@ [—verify filename] [—prverify filename] [—signature
filename] [file...]

[md5Cmd40md2CshalShalidc2ripemd160] [—c] [-d] [file..]

DESCRIPTION
The digest functions output the message digest of a supplied file or files in hexadecimal form. They can
also be used for digital signing and verification.

OPTIONS
—c print out the digest in two digit groups separated by colons, only releviaax format output is
used.

—d print outBIO debugging information.

—hex
digest is to be output as a hex dump. This is the default case for a “normal” digest as opposed to a
digital signature.

—binary
output the digest or signature in binary form.

—out filename
filename to output to, or standard output by default.

—sign filename
digitally sign the digest using the private key in “filename”.

-verify filename
verify the signature using the the public key in “filename”. The output is either “Verification
OK” or “Verification Failure”.

—prverify filename
verify the signature using the the private key in “filename”.

—signature filename
the actual signature to verify.

—rand file(s)
a file or files containing random data used to seed the random number generataGDisanket
(seeRAND_egd3)). Multiple files can be specified separated by a OS-dependent character. The
separator is for MS-Windows,, for OpenVMS, and for all others.

file...
file or files to digest. If no files are specified then standard input is used.

NOTES
The digest of choice for all new applicationsi$A1. Other digests are however still widely used.

If you wish to sign or verify data using tBsA algorithm then the dss1 digest must be used.
A source of random numbers is required for certain signing algorithms, in parbQAar
The signing and verify options should only be used if a single file is being signed or verified.

20 2000-09-04 0.9.7c

DHPARAM(1) OpenSSL DHPARAM(1)

NAME
dhparam - DH parameter manipulation and generation

SYNOPSIS
openssl dhparam[-inform DER [PEM] [—outform DERPEM] [-in filename] fout filenamé
[-dsaparam] [-noout] [-text] [-C] [-2] [-5] [-rand file(s)] [-engine id [numbit$
DESCRIPTION
This command is used to manipulate parameter files.

OPTIONS
—inform DEROPEM
This specifies the input format. TBER option uses aASN1 DERencoded form compatible with
the PKCS#3 DHparameter structure. THEM form is the default format: it consists of th&R
format base64 encoded with additional header and footer lines.

—outform DERIPEM
This specifies the output format, the options have the same meaning-agdha option.

—in filename

This specifies the input filename to read parameters from or standard input if this option is not

specified.
—out filename

This specifies the output filename parameters to. Standard output is used if this option is not

present. The output flename shountut be the same as the input filename.

—dsaparam
If this option is used)SA rather tharbDH parameters are read or created; they are convertzd to
format. Otherwise, “strong” primes (such that (p—1)/2 is also prime) will be usedHqrarame-
ter generation.

DH parameter generation with thelsaparamoption is much faster, and the recommended expo-

nent length is shorter, which makes key exchange more efficient. Beware that with such DSA-

style DH parameters, a freshH key should be created for each use to avoid small-subgroup

attacks that may be possible otherwise.
-2,-5

The generator to use, either 2 or 5. 2 is the default. If present then the input file is ignored and

parameters are generated instead.

—rand file(s)
a file or files containing random data used to seed the random number generataGDisanket

(seeRAND_egd3)). Multiple files can be specified separated by a OS-dependent character. The

separator is for MS-Windows,, for OpenVMS, and for all others.

numbits
this option specifies that a parameter set should be generated ofisibis. It must be the last

option. If not present then a value of 512 is used. If this option is present then the input file is

ignored and parameters are generated instead.

—noout
this option inhibits the output of the encoded version of the parameters.

—text
this option prints out thBH parameters in human readable form.

—C this option converts the parameters into C code. The parameters can then be loaded by calling the

get_dhnumbité) function.

—engine id
specifying an engine (by it's unique string) will causaeq to attempt to obtain a functional ref-

erence to the specified engine, thus initialising it if needed. The engine will then be set as the

default for all available algorithms.

0.9.7c 2003-01-30 21

DHPARAM(1) OpenSSL DHPARAM(1)

WARNINGS
The prograndhparam combines the functionality of the progranis andgendhin previous versions
of OpenSSL and SSLeay. THh andgendhprograms are retained for now but may have different pur-
poses in future versions of OpenSSL.

NOTES
PEMformatDH parameters use the header and footer lines:

OpenSSL currently only supports the older PKCB#3not the newer X9.4DH.
This program manipulatésH parameters not keys.

BUGS
There should be a way to generate and manipDlatieeys.

SEE ALSO
dsaparan(1)

HISTORY
The dhparam command was added in OpenSSL 0.9.5. Husaparam option was added in
OpenSSL 0.9.6.

22 2003-01-30 0.9.7c

DSA(1) OpenSSL DSA(1)

NAME
dsa — DSA key processing

SYNOPSIS
openssl dsg-inform PEM [DER] [-outform PEMODER] [-in filename] [-passin arg [—out file-
name| [—passout arg] Fded [-des3 [-idea] [-text] [-noouf] [-modulus] [-pubin] [-pubout]
[-engine id]

DESCRIPTION
The dsacommand processé&ssA keys. They can be converted between various forms and their com-
ponents printed oublote This command uses the traditional SSLeay compatible format for private key
encryption: newer applications should use the more secure PKCS#8 format ugikcsthe

COMMAND OPTIONS
—inform DEROPEM
This specifies the input format. TIER option with a private key uses &sN1 DERencoded
form of anASN.1 SEQUENCECconsisting of the values of version (currently zero), p, q, g, the pub-
lic and private key components respectivelyaasl.1 INTEGERs. When used with a public key it
uses a SubjectPublicKeylnfo structure: it is an error if the key iD®&at

ThePEM form is the default format: it consists of thER format base64 encoded with additional
header and footer lines. In the case of a private key PKCS#8 format is also accepted.

—outform DERIPEM
This specifies the output format, the options have the same meaning-agdha option.

—in filename
This specifies the input filename to read a key from or standard input if this option is not specified.
If the key is encrypted a pass phrase will be prompted for.

—passin arg
the input file password source. For more information about the formatgofee thePASS
PHRASE ARGUMENTS section inopenss(1).

—out filename
This specifies the output filename to write a key to or standard output by is not specified. If any
encryption options are set then a pass phrase will be prompted for. The output filenamaathould
be the same as the input filename.

—passout arg
the output file password source. For more information about the fornmeigdee thePASS
PHRASE ARGUMENTS section inopenss(1).

—des@des3Fidea
These options encrypt the private key with IS, triple DES, or theIDEA ciphers respectively
before outputting it. A pass phrase is prompted for. If none of these options is specified the key is
written in plain text. This means that using tiea utility to read in an encrypted key with no

encryption option can be used to remove the pass phrase from a key, or by setting the encryption

options it can be use to add or change the pass phrase. These options can only be Beét with
format output files.

—text
prints out the public, private key components and parameters.

—noout
this option prevents output of the encoded version of the key.

—modulus

this option prints out the value of the public key component of the key.
—pubin

by default a private key is read from the input file: with this option a public key is read instead.
—pubout

by default a private key is output. With this option a public key will be output instead. This option
is automatically set if the input is a public key.

0.9.7c 2003-01-30 23

DSA(1) OpenSSL DSA(1)

—engine id
specifying an engine (by it's unique string) will causaeq to attempt to obtain a functional ref-
erence to the specified engine, thus initialising it if needed. The engine will then be set as the
default for all available algorithms.

NOTES
ThePEM private key format uses the header and footer lines:

EXAMPLES
To remove the pass phrase obSa private key:

openssl dsa -in key.pem -out keyout.pem
To encrypt a private key using trigbeS:
openssl dsa -in key.pem -des3 -out keyout.pem
To convert a private key froPEM to DER format:
openssl dsa -in key.pem -outform DER -out keyout.der
To print out the components of a private key to standard output:
openssl dsa -in key.pem -text -noout
To just output the public part of a private key:
openssl dsa -in key.pem -pubout -out pubkey.pem

SEE ALSO
dsaparam(1), gendsdq1), rsa(1), genrsa(l)

24 2003-01-30 0.9.7c

DSAPARAM(1) OpenSSL DSAPARAM(1)

NAME

dsaparam — DSA parameter manipulation and generation

SYNOPSIS

openssl dsaparam—inform DER [PEM] [—outform DERPEM] [-in filename] [-out filenamg
[-noout] [-text] [-C] [-rand file(s)] [-genkey] [-engine id [numbits]

DESCRIPTION

This command is used to manipulate or gendvaie parameter files.

OPTIONS

—inform DEROPEM
This specifies the input format. TBER option uses aASN1 DERencoded form compatible with
RFC2459(PKIX) DSS-Parms that is BEQUENCEconsisting of p, g and g respectively. TiEM
form is the default format: it consists of tb&R format base64 encoded with additional header
and footer lines.

—outform DERIPEM
This specifies the output format, the options have the same meaning-agdha option.

—in filename
This specifies the input filename to read parameters from or standard input if this option is not
specified. If thexumbits parameter is included then this option will be ignored.

—out filename
This specifies the output filename parameters to. Standard output is used if this option is not
present. The output flename shountut be the same as the input filename.

—noout
this option inhibits the output of the encoded version of the parameters.

—text
this option prints out thBSA parameters in human readable form.

—C this option converts the parameters into C code. The parameters can then be loaded by calling the
get_dsaxXXX() function.

—genkey
this option will generate RSA either using the specified or generated parameters.

—rand file(s)
a file or files containing random data used to seed the random number generatBGDisanket
(seeRAND_egd3)). Multiple files can be specified separated by a OS-dependent character. The
separator is for MS-Windows,, for OpenVMS, and for all others.

numbits
this option specifies that a parameter set should be generated ofisizis. It must be the last
option. If this option is included then the input file (if any) is ignored.

—engine id
specifying an engine (by it's unique string) will causaeq to attempt to obtain a functional ref-
erence to the specified engine, thus initialising it if needed. The engine will then be set as the
default for all available algorithms.

NOTES

PEMformatDSA parameters use the header and footer lines:

DSA parameter generation is a slow process and as a result the sam®Satpaframeters is often
used to generate several distinct keys.

SEE ALSO

0.9.7c

gendsd1l), dsa(1), genrsa1), rsa(1)

2003-01-30 25

ENC(1) OpenSSL ENC(1)

NAME
enc — symmetric cipher routines

SYNOPSIS
openssl enc —ciphernamé-in filename] [-out filenamg [—pass ard [-€] [-d] [-a] [-A] [-k pass-
word] [—kfile filename] [-K key] [-iv IV] [-p] [-P] [-bufsize humber] [-nopad] [-debud

DESCRIPTION
The symmetric cipher commands allow data to be encrypted or decrypted using various block and
stream ciphers usingel¢s based on passwords or explicitly provided. Base64 encoding or decoding can
also be performed either by itself or in addition to the encryption or decryption.

OPTIONS
—in filename
the input filename, standard input by default.

—out filename
the output filename, standard output by default.

—pass arg
the password source. For more information about the fornsatafee thePASS PHRASE ARGU-
MENTS section inopenss(1).

-salt
use a salt in the key derivation routines. This option sheillgAYS be used unless compatibility
with previous versions of OpenSSL or SSlLeay is required. This option is only present on
OpenSSL versions 0.9.5 or above.

—-nosalt
don’t use a salt in the key derivation routines. This is the default for compatibility with previous
versions of OpenSSL and SSLeay.

—e encrypt the input data: this is the default.
—d decrypt the input data.

—a base64 process the data. This means that if encryption is taking place the data is base64 encoded
after encryption. If decryption is set then the input data is base64 decoded before being decrypted.

—-A if the —aoption is set then base64 process the data on one line.

-k password
the password to derive the key from. This is for compatibility with previous versions of OpenSSL.
Superseded by thepassargument.

—kfile filename
read the password to derive the key from the first liffidesfame. This is for computability with
previous versions of OpenSSL. Superseded by plassargument.

-S salt
the actual salt to use: this must be represented as a string comprised only of hex digits.

-K key
the actual key to use: this must be represented as a string comprised only of hex digits. If only the
key is specified, thév must additionally specified using thév option. When both a key and a
password are specified, the key given with-tKeoption will be used and th¥ generated from
the password will be taken. It probably does not make much sense to specify both key and pass-
word.

=iv IV
the actualVv to use: this must be represented as a string comprised only of hex digits. When only

the key is specified using theK option, thelv must explicitly be defined. When a password is
being specified using one of the other options|\this generated from this password.

—p print out the key antl/ used.

—P print out the key and/ used then immediately exit: don’t do any encryption or decryption.

26 2001-09-07 0.9.7c

ENC(1) OpenSSL ENC(1)

—bufsize number
set the buffer size for I/O

—nopad
disable standard block padding

—debug
debug the BIOs used for 1/0.

NOTES
The program can be called eitherog&nssl ciphernamer openssl enc —ciphername

A password will be prompted for to derive the key andf necessary.

The —salt option shouldALWAYS be used if the key is being derived from a password unless you want
compatibility with previous versions of OpenSSL and SSLeay.

Without the—salt option it is possible to perform efficient dictionary attacks on the password and to
attack stream cipher encrypted data. The reason for this is that without the salt the same password
always generates the same encryption key. When the salt is being used the first eight bytes of the
encrypted data are reserved for the salt: it is generated at random when encrypting a file and read from
the encrypted file when it is decrypted.

Some of the ciphers do not have large keys and others have security implications if not used correctly.
A beginner is advised to just use a strong block cipheBibmode such as bf or des3.

All the block ciphers normally use PKCS#5 padding also known as standard block padding: this allows
a rudimentary integrity or password check to be performed. However since the chance of random data
passing the test is better than 1 in 256 it isn’'t a very good test.

If padding is disabled then the input data must be a multiple of the cipher block length.
All RC2ciphers have the same key and effective key length.
Blowfish andRC5algorithms use a 128 bit key.

SUPPORTED CIPHERS

base64 Base 64

bf-cbc Blowfish in CBC mode

bf Alias for bf-cbc

bf-cfb Blowfish in CFB mode

bf-ech Blowfish in ECB mode

bf-ofb Blowfish in OFB mode

cast-chc CAST in CBC mode

cast Alias for cast-cbc

castb5-chc CAST5 in CBC mode

castb-cfb CAST5 in CFB mode

castb-ech CAST5 in ECB mode

castb5-ofb CAST5 in OFB mode

des-cbc DES in CBC mode

des Alias for des-chc

des-cfb DES in CBC mode

des-ofb DES in OFB mode

des-ecbh DES in ECB mode

des-ede-cbc Two key triple DES EDE in CBC mode
des-ede Alias for des-ede

des-ede-cfb Two key triple DES EDE in CFB mode
des-ede-ofb Two key triple DES EDE in OFB mode
des-ede3-cbc Three key triple DES EDE in CBC mode
des-ede3 Alias for des-ede3-cbhc

des3 Alias for des-ede3-cbc

des-ede3-cfb Three key triple DES EDE CFB mode
des-ede3-ofb Three key triple DES EDE in OFB mode

0.9.7c 2001-09-07 27

ENC(1) OpenSSL ENC(1)

desx DESX algorithm.
idea-cbc IDEA algorithm in CBC mode
idea same as idea-cbc
idea-cfb IDEA in CFB mode
idea-ecb IDEA in ECB mode
idea-ofb IDEA in OFB mode
rc2-cbc 128 bit RC2 in CBC mode
rc2 Alias for rc2-cbc
rc2-cfb 128 bit RC2 in CBC mode
rc2-ecbh 128 bit RC2 in CBC mode
rc2-ofb 128 bit RC2 in CBC mode
rc2-64-cbc 64 bit RC2 in CBC mode
rc2-40-cbc 40 bit RC2 in CBC mode
rc4 128 bit RC4
rc4-64 64 bit RC4
rc4-40 40 bit RC4
rcs-cbce RC5 cipher in CBC mode
rcs Alias for rc5-cbc
rcs5-cfb RC5 cipher in CBC mode
rcs-ecb RC5 cipher in CBC mode
rc5-ofb RC5 cipher in CBC mode
EXAMPLES

Just base64 encode a binary file:
openssl| base64 -in file.bin -out file.b64
Decode the same file
openssl base64 -d -in file.b64 -out file.bin
Encrypt a file using tripl®ESin CBC mode using a prompted password:
openssl| des3 -salt -in file.txt -out file.des3
Decrypt a file using a supplied password:
openssl| des3 -d -salt -in file.des3 -out file.txt -k mypassword

Encrypt a file then base64 encode it (so it can be sent via mail for example) using Blowgfigh in
mode:

openssl bf -a -salt -in file.txt -out file.bf

Base64 decode a file then decrypt it:
openssl bf -d -salt -a -in file.bf -out file.txt

Decrypt some data using a supplied 4(Ra# key:
openssl rc4-40 -in file.rc4 -out file.txt -K 0102030405

BUGS
The—A option when used with large files doesn’t work properly.

There should be an option to allow an iteration count to be included.

The encprogram only supports a fixed number of algorithms with certain parameters. So if, for exam-
ple, you want to uskRC2with a 76 bit key oRC4with an 84 bit key you can't use this program.

28 2001-09-07 0.9.7c

GENDSA(1) OpenSSL GENDSA(1)

NAME
gendsa - generate a DSA private key from a set of parameters

SYNOPSIS
openssl gends§—out filename] [-deq [-des3 [-ided] [-rand file(s)] [-engine id [paramfile]

DESCRIPTION
The gendsacommand generatesxsA private key from @SA parameter file (which will be typically
generated by thepenss| dsaparantommand).

OPTIONS
—des@des3Fidea
These options encrypt the private key with IS, triple DES, or theIDEA ciphers respectively
before outputting it. A pass phrase is prompted for. If none of these options is specified no
encryption is used.

—rand file(s)
a file or files containing random data used to seed the random number generataGDisanket
(seeRAND_egd3)). Multiple files can be specified separated by a OS-dependent character. The
separator is for MS-Windows,, for OpenVMS, and for all others.

—engine id
specifying an engine (by it's unique string) will causaeq to attempt to obtain a functional ref-

erence to the specified engine, thus initialising it if needed. The engine will then be set as the
default for all available algorithms.

paramfile
This option specifies theSA parameter file to use. The parameters in this file determine the size
of the private keyDSA parameters can be generated and examined usirapémss| dsaparam
command.

NOTES
DSA key generation is little more than random number generation so it is much quickesAaty
generation for example.

SEE ALSO
dsaparan(1), dsa(1), genrsa1), rsa(1)

0.9.7c 2003-01-30 29

GENRSA(1) OpenSSL GENRSA(1)

NAME
genrsa — generate an RSA private key

SYNOPSIS
openssl genrsg-out filename] [-passout arg [—des] [-des3 [-ided) [-f4] [-3] [-rand file(s)]
[-engine id] [numbits]

DESCRIPTION
Thegenrsacommand generates RISA private key.

OPTIONS
—out filename
the output filename. If this argument is not specified then standard output is used.

—passout arg
the output file password source. For more information about the fornmaigdee thePASS
PHRASE ARGUMENTS section inopenss(1).

—des@des3Fidea
These options encrypt the private key with IS, triple DES, or theIDEA ciphers respectively
before outputting it. If none of these options is specified no encryption is used. If encryption is
used a pass phrase is prompted for if it is not supplied vigpesoutargument.

-F43-3
the public exponent to use, either 65537 or 3. The default is 65537.

—rand file(s)
a file or files containing random data used to seed the random number generataGDisanket
(seeRAND_egd3)). Multiple files can be specified separated by a OS-dependent character. The
separator is for MS-Windows,, for OpenVMS, and for all others.

—engine id
specifying an engine (by it's unique string) will causaeq to attempt to obtain a functional ref-
erence to the specified engine, thus initialising it if needed. The engine will then be set as the
default for all available algorithms.

numbits
the size of the private key to generate in bits. This must be the last option specified. The default is
512.

NOTES
RSA private key generation essentially involves the generation of two prime numbers. When generating
a private key various symbols will be output to indicate the progress of the generatiprésents
each number which has passed an initial sieve-taagans a number has passed a single round of the
Miller-Rabin primality test. A newline means that the number has passed all the prime tests (the actual
number depends on the key size).

Because key generation is a random process the time taken to generate a key may vary somewhat.

BUGS
A quirk of the prime generation algorithm is that it cannot generate small primes. Therefore the number
of bits should not be less that 64. For typical private keys this will not matter because for security rea-
sons they will be much larger (typically 1024 bits).

SEE ALSO
gendsd1l)

30 2003-01-30 0.9.7c

NSEQ(1) OpenSSL NSEQ(1)

NAME
nseq — create or examine a netscape certificate sequence

SYNOPSIS
openssl nsed—in filename] [-out filename] [-tosed

DESCRIPTION
Thenseqcommand takes a file containing a Netscape certificate sequence and prints out the certificates
contained in it or takes a file of certificates and converts it into a Netscape certificate sequence.

COMMAND OPTIONS
—in filename
This specifies the input filename to read or standard input if this option is not specified.

—out filename
specifies the output filename or standard output by default.

-toseq
normally a Netscape certificate sequence will be input and the output is the certificates contained

in it. With the —toseqoption the situation is reversed: a Netscape certificate sequence is created
from a file of certificates.

EXAMPLES
Output the certificates in a Netscape certificate sequence

openssl nseq -in nseq.pem -out certs.pem
Create a Netscape certificate sequence
openssl nseq -in certs.pem -toseq -out nseq.pem

NOTES
ThePEM encoded form uses the same headers and footers as a certificate:

A Netscape certificate sequence is a Netscape specific form that can be sent to browsers as an alterna-
tive to the standard PKCS#7 format when several certificates are sent to the browser: for example dur-
ing certificate enrollment. It is used by Netscape certificate server for example.

BUGS

This program needs a few more options: like allowi&R or PEM input and output files and allowing
multiple certificate files to be used.

0.9.7c 2000-01-21 31

OCSP(1) OpenSSL OCSP(1)

NAME
ocsp — Online Certificate Status Protocol utility

SYNOPSIS

openssl ocsp[-out file] [—issuer file] [-cert file] [-serial n] [-signer file] [-signkey fild
[-sign_other file] [-no_certs] [-req_text] [-resp_tex{ [-text] [-reqout file] [-respout filg [-reqin
file] [-respin file] [-noncd [-no_noncé [-url URL] [-host host:n] [-path] [-CApath dir]
[-CAfile file] [—-VAfile file] [—validity _period n] [-status_age h[—-noverify] [—verify_other file]
[-trust_other] [-no_intern] [-no_signature_verify] [-no_cert_verify] [-no_chain]
[-no_cert_checks] fport num] [—index file] [-CA file] [-rsigner file] [-rkey file] [-rother file]
[-resp_no_certs] Fnmin n] [-ndays f [-resp_key_id [-nrequest]

DESCRIPTION
The Online Certificate Status ProtocOIQSP enables applications to determine the (revocation) state
of an identified certificateRfFC 2560).

The ocsp command performs many comma@tTCSPtasks. It can be used to print out requests and
responses, create requests and send queriest6S®#responder and behave like a mtCSPserver
itself.

OCSP CLIENT OPTIONS
—out filename
specify output filename, default is standard output.

—issuer filename
This specifies the current issuer certificate. This option can be used multiple times. The certificate
specified irfilenamemust be irPEM format.

—cert filename
Add the certificatdilenameto the request. The issuer certificate is taken from the preigisuesr
option, or an error occurs if no issuer certificate is specified.

-serial num
Same as theert option except the certificate with serial numbam is added to the request. The
serial number is interpreted as a decimal integer unless prece@zdNygative integers can also
be specified by preceding the value by sign.

—signer filename,—signkey filename
Sign theOCSPrequest using the certificate specified inglgmer option and the private key speci-
fied by thesignkey option. If thesignkey option is not present then the private key is read from
the same file as the certificate. If neither option is specified thedBerequest is not signed.

—sign_other filename
Additional certificates to include in the signed request.

—-nonce —no_nonce
Add anOCSPnonce extension to a request or disassPnonce addition. Normally if aOCSP
request is input using threspin option no nonce is added: using ti@ceoption will force addi-
tion of a nonce. If alDCSPrequest is being created (usiogrt and serial options) a nonce is
automatically added specifying_nonceoverrides this.

—req_text, —resp_text,—text
print out the text form of th@CSPrequest, response or both respectively.

—-reqout file, —respout file
write out theDER encoded certificate request or respondéeo

—reqin file, —respin file
readOCSPrequest or response file frdite. These option are ignoreddCSPrequest or response
creation is implied by other options (for example veghial, cert andhost options).

—url responder_url
specify the responde&mRL. BothHTTP andHTTPS(SSL/TLS URLSs can be specified.

32 2003-03-26 0.9.7c

OCSP(1) OpenSSL OCSP(1)

—host hostname:port —path pathname
if the hostoption is present then tl@CSPrequest is sent to the hdgisthnameon portport. path
specifies th&iTTP path name to use or “/” by default.

—CAfile file, -CApath pathname
file or pathname containing trusted certificates. These are used to verify the signature on the
OCSPresponse.

-verify_other file
file containing additional certificates to search when attempting to locaCtreresponse sign-
ing certificate. Some responders omit the actual signer’s certificate from the response: this option
can be used to supply the necessary certificate in such cases.

—trust_other
the certificates specified by theerify _certs option should be explicitly trusted and no additional
checks will be performed on them. This is useful when the complete responder certificate chain is
not available or trusting a roG® is not appropriate.

-VAfile file
file containing explicitly trusted responder certificates. Equivalent to-trexify certs and
—trust_other options.

—noverify
don't attempt to verify th©CSPresponse signature or the nonce values. This option will normally
only be used for debugging since it disables all verification of the responders certificate.

—-no_intern
ignore certificates contained in te€SPresponse when searching for the signers certificate. With
this option the signers certificate must be specified with eithervbeafy certs or —VAfile
options.

—no_signature_verify
don’t check the signature on tlleCSPresponse. Since this option tolerates invalid signatures on
OCSPresponses it will normally only be used for testing purposes.

—-no_cert_verify
don’t verify the OCSP response signers certificate at all. Since this option allowsOt®P
response to be signed by any certificate it should only be used for testing purposes.

—no_chain
do not use certificates in the response as additional untcisteeltificates.

—-no_cert_checks
don’t perform any additional checks on th€SPresponse signers certificate. That is do not make
any checks to see if the signers certificate is authorised to provide the necessary status informa-
tion: as a result this option should only be used for testing purposes.

-validity _period nsec,—status_age age
these options specify the range of times, in seconds, which will be tolerated@@sanresponse.
Each certificate status response includestBeforetime and an optionalotAfter time. The cur-
rent time should fall between these two values, but the interval between the two times may be only
a few seconds. In practice tlSPresponder and clients clocks may not be precisely synchro-
nised and so such a check may fail. To avoid this-tadidity period option can be used to spec-
ify an acceptable error range in seconds, the default value is 5 minutes.

If the notAfter time is omitted from a response then this means that new status information is
immediately available. In this case the age ofrtb&Before field is checked to see it is not older
thanageseconds old. By default this additional check is not performed.

OCSP SERVER OPTIONS

0.9.7c

—index indexfile
indexfile is a text index file irtaformat containing certificate revocation information.

If the index option is specified thecsputility is in responder mode, otherwise it is in client mode.
The request(s) the responder processes can be either specified on the command lissuesing
and serial options), supplied in a file (using tlmespin option) or via externaDCSPclients (if
port or url is specified).

2003-03-26 33

OCSP(1) OpenSSL OCSP(1)

If the index option is present then tl@A andrsigner options must also be present.

—-CA file
CA certificate corresponding to the revocation informatioimdexfile.

—rsigner file
The certificate to sigfpCSPresponses with.

—rother file
Additional certificates to include in tl@CSPresponse.

-resp_no_certs
Don't include any certificates in tl@CSPresponse.

—-resp_key id
Identify the signer certificate using the key default is to use the subject name.

—rkey file
The private key to sigpCSPresponses with: if not present the file specified irrgigner option
is used.

—port portnum
Port to listen folOCSPrequests on. The port may also be specified usingrthegption.

—nrequest number
TheOocCsPserver will exit after receivingumber requests, default unlimited.

—nmin minutes, —ndays days
Number of minutes or days when fresh revocation information is available: usednexthp-
date field. If neither option is present then thextUpdatefield is omitted meaning fresh revoca-
tion information is immediately available.

OCSP Response verification.

OCSPResponse follows the rules specifiedRFC2560

Initially the OCSPresponder certificate is located and the signature oo@is®request checked using
the responder certificate’s public key.

Then a normal certificate verify is performed on@@SPresponder certificate building up a certificate

chain in the process. The locations of the trusted certificates used to build the chain can be specified by
the CAfile and CApath options or they will be looked for in the standard OpenSSL certificates direc-
tory.

If the initial verify fails then thedCSPverify process halts with an error.

Otherwise the issuing@A certificate in the request is compared to @@SPresponder certificate: if
there is a match then tieeCSPverify succeeds.

Otherwise theOCSPresponder certificate’SA is checked against the issuiag certificate in the
request. If there is a match and the OCSPSigning extended key usage is presedC8Ptieeponder
certificate then th@CSPverify succeeds.

Otherwise the rooCA of the OCSPrespondersA is checked to see if it is trusted foCSPsigning. If
it is theOCSPverify succeeds.

If none of these checks is successful therothsPverify fails.

What this effectively means if that if tt@CSPresponder certificate is authorised directly byaheit
is issuing revocation information about (and it is correctly configured) then verification will succeed.

If the OCSPresponder is a “global responder” which can give details about multiple CAs and has its
own separate certificate chain then its i©atcan be trusted fabCSPsigning. For example:

openssl x509 -in ocspCA.pem -addtrust OCSPSigning -out trustedCA.pem
Alternatively the responder certificate itself can be explicitly trusted with\#Adile option.

NOTES

As noted, most of the verify options are for testing or debugging purposes. Normally on{yAhe
ath, —CAfile and (if the responder is a 'glob#’) —VAfile options need to be used.

The OCsPserver is only useful for test and demonstration purposes: it is not really usable as a full

2003-03-26 0.9.7c

OCSP(1) OpenSSL OCSP(1)

OCSPresponderlt contains only a very simpldTTP request handling and can only handle R@sST

form of OCSPqueries. It also handles requests serially meaning it cannot respond to new requests until
it has processed the current one. The text index file format of revocation is also inefficient for large
guantities of revocation data.

It is possible to run thecsp application in responder mode viaC&l script using therespin and
respoutoptions.

EXAMPLES

0.9.7c

Create aroCSPrequest and write it to a file:
openssl ocsp -issuer issuer.pem -cert cl.pem -cert c2.pem -reqout req.der

Send a query to aBCSPresponder withURL http://ocsp.myhost.com/ save the response to a file and
print it out in text form

openssl ocsp -issuer issuer.pem -cert cl.pem -cert c2.pem \
-url http://ocsp.myhost.com/ -resp_text -respout resp.der

Read in arDCSPresponse and print out text form:
openssl ocsp -respin resp.der -text

OCSPserver on port 8888 using a standaadconfiguration, and a separate responder certificate. All
requests and responses are printed to a file.

openssl ocsp -index demoCA/index.txt -port 8888 -rsigner rcert.pem -CA demoCA/cacert.pem
-text -out log.txt

As above but exit after processing one request:

openssl ocsp -index demoCA/index.txt -port 8888 -rsigner rcert.pem -CA demoCA/cacert.pem
-nrequest 1

Query status information using internally generated request:

openssl ocsp -index demoCA/index.txt -rsigner rcert.pem -CA demoCA/cacert.pem
-issuer demoCA/cacert.pem -serial 1

Query status information using request read from a file, write response to a second file.

openssl ocsp -index demoCA/index.txt -rsigner rcert.pem -CA demoCA/cacert.pem
-reqin req.der -respout resp.der

2003-03-26 35

OPENSSL(1) OpenSSL OPENSSL(1)

NAME

openssl — OpenSSL command line tool

SYNOPSIS

openssicommand command_opts[command_arg$
openss|[list-standard-commandsllist-message-digest-commandslist-cipher-commands]
openssl noXXX[arbitrary options]

DESCRIPTION

OpenSSL is a cryptography toolkit implementing the Secure Sockets 1S8levZ/v3) and Transport
Layer Security TLS v1) network protocols and related cryptography standards required by them.

The openssl program is a command line tool for using the various cryptography functions of
OpenSSL'srypto library from the shell. It can be used for

0 Creation of RSA, DH and DSA key parameters
Creation of X.509 certificates, CSRs and CRLs
Calculation of Message Digests

Encryption and Decryption with Ciphers
SSL/TLS Client and Server Tests

o Handling of SIMIME signed or encrypted mail

O O OO

COMMAND SUMMARY

36

Theopensslprogram provides a rich variety of commands (comniaride SYNOPSISabove), each of
which often has a wealth of options and argumesammand_optandcommand_argé the SYNOP-
SI9).

The pseudo-commandsst-standard-commands, list-message-digest-commandsand list-cipher-
commandsoutput a list (one entry per line) of the names of all standard commands, message digest
commands, or cipher commands, respectively, that are available in the ppesesgiutility.

The pseudo-commamb-XXXtests whether a command of the specified name is available. If no com-
mand named&XX exists, it returns 0 (success) and primisXXX, otherwise it returns 1 and prirtxx

In both cases, the output goesstdout and nothing is printed tetderr. Additional command line
arguments are always ignored. Since for each cipher there is a command of the same name, this pro-
vides an easy way for shell scripts to test for the availability of ciphers iopbesslprogram.
(no—XXXis not able to detect pseudo-commands sucjuislist-...—commands, omo-XXxXitself.)

STANDARD COMMANDS

asnlparse Parse am\SN.1 sequence.

ca Certificate Authority CA) Management.

ciphers Cipher Suite Description Determination.

crl Certificate Revocation LisCRL) Management.

crl2pkcs7? CRLto PKCS#7 Conversion.

dgst Message Digest Calculation.

dh Diffie-Hellman Parameter Management. ObsoletedHtgyaram.
dsa DSA Data Management.

dsaparam DSA Parameter Generation.

enc Encoding with Ciphers.

errstr Error Number to Error String Conversion.

dhparam Generation and Management of Diffie-Hellman Parameters.
gendh Generation of Diffie-Hellman Parameters. Obsoletedhparam.
gendsa Generation oDSA Parameters.

2001-08-08 0.9.7c

OPENSSL(1)

0.9.7c

genrsa
ocsp
passwd
pkcs12
pkcs7
rand
req

rsa
rsautl
s_client

S_server

s_time
sess_id
smime
speed
verify
version
x509

OpenSSL OPENSSL(1)

Generation o0RSA Paameters.

Online Certificate Status Protocol utility.

Generation of hashed passwords.

PKCS#12 Data Management.

PKCS#7 Data Management.

Generate pseudo-random bytes.

X.509 Certificate Signing Request§R Management.

RSA Data Management.

RSA utility for signing, verification, encryption, and decryption.

This implements a gener&SL/TLS client which can establish a transparent connection to
a remote server speakirg5L/TLS It's intended for testing purposes only and provides
only rudimentary interface functionality but internally uses mostly all functionality of the
OpenSStssllibrary.

This implements a gener&SL/TLSserver which accepts connections from remote clients
speakingSSL/TLS It's intended for testing purposes only and provides only rudimentary
interface functionality but internally uses mostly all functionality of the OpenS$L
library. It provides both an own command line oriented protocol for testdigunctions

and a simpléiTTP response facility to emulate an SSL/TLS—aware webserver.

SSLConnection Timer.

SSL Session Data Management.
S/MIME mail processing.

Algorithm Speed Measurement.
X.509 Certificate Verification.
OpenSSL Version Information.
X.509 Certificate Data Management.

MESSAGE DIGEST COMMANDS

md2
md5
mdc2
rmd160
sha
shal

MD2 Digest
MD5 Digest
MDC?2 Digest
RMD-160Digest
SHA Digest
SHA-1Digest

ENCODING AND CIPHER COMMANDS

base64

Base64 Encoding

bf bf-cbc bf-cfb bf-ecb bf-ofb

Blowfish Cipher

cast cast-chc

CAST Cipher

castb—cbc cast5-cfb casts5—ecb cast5—-ofb

CAST5 Cipher

des des-cbc des-cfb des-ech des-ede des-ede-cbc des-ede-cfb des-ede-ofb des-ofb

DESCipher

2001-08-08 37

OPENSSL(1) OpenSSL OPENSSL(1)

des3 desx des—ede3 des—ede3—-cbc des—ede3-cfb des—ede3—ofb
Triple-DES Cipher

idea idea-cbc idea-cfb idea-ecb idea-ofb

IDEA Cipher

rc2 rc2—cbc rc2—-cfb rc2—ecb rc2—ofb
RC2Cipher

rca RC4Cipher

rch5 rc5—cbce re5—-cfb re5—-ecb rc5-ofb
RC5 Cipher

PASS PHRASE ARGUMENTS
Several commands accept password arguments, typically dpagsin and —passoutfor input and
output passwords respectively. These allow the password to be obtained from a variety of sources. Both
of these options take a single argument whose format is described below. If no password argument is
given and a password is required then the user is prompted to enter one: this will typically be read from
the current terminal with echoing turned off.

pass:password
the actual password massword. Since the password is visible to utilities (like 'ps’ under
Unix) this form should only be used where security is not important.

env:var obtain the password from the environment varialde Since the environment of other
processes is visible on certain platforms (e.g. ps under certain Unix OSes) this option
should be used with caution.

file:pathname
the first line ofpathnameis the password. If the sarmpathname argument is supplied to
—passinand—passoutarguments then the first line will be used for the input password and
the next line for the output passwopdthnameneed not refer to a regular file: it could for
example refer to a device or named pipe.

fd:number
read the password from the file descriptamber. This can be used to send the data via a
pipe for example.
stdin read the password from standard input.
SEE ALSO

asnlparsél), ca(l), config(5), crl (1), crl2pkcs7(1), dgst(1), dhparam(1), dsa(l), dsaparan{l),
enc(1l), gendsdql), genrsal), nseql), openss(l), passwdl), pkcslq1), pkcs7(1l), pkcs§1l),
rand(1), req(1), rsa(l), rsautl(1), s_client(1), s_serve(l), smimegl), spkaql), verify(1), version(1),
x509(1), crypto(3), ssl(3)

HISTORY
The openss(1) document appeared in OpenSSL 0.9.2. [[BteXXXx-commandspseudo-commands
were added in OpenSSL 0.9.3; the-XXX pseudo-commands were added in OpenSSL 0.9.5a. For
notes on the availability of other commands, see their individual manual pages.

38 2001-08-08 0.9.7c

PASSWD(1) OpenSSL PASSWD(1)

NAME
passwd — compute password hashes

SYNOPSIS
openssl| passwd-crypt] [-1] [-aprl] [—salt string] [=in file] [-stdin] [-noverify] [—quiet] [-table]
{passworg

DESCRIPTION
Thepasswdcommand computes the hash of a password typed at run-time or the hash of each password
in a list. The password list is taken from the named file for optionfile, from stdin for option
—stdin, or from the command line, or from the terminal otherwise. The Unix standard algorithin
and the MD5-baseBSD password algorithrit and its Apache variaiprl are available.

OPTIONS
—crypt

Use thecrypt algorithm (default).

-1 Use theviD5 basedSD password algorithri.

—aprl
Use theaprl algorithm (Apache variant of tt&sD algorithm).
—salt string
Use the specified salt. When reading a password from the terminal, this inmuliesify.
—in file
Read passwords frofite.
-stdin
Read passwords frostdin.
—noverify
Don't verify when reading a password from the terminal.
—quiet
Don'’t output warnings when passwords given at the command line are truncated.
—table
In the output list, prepend the cleartext password amdBacharacter to each password hash.
EXAMPLES

openssl| passwd —crypt —salt xx passwonarintsxxj31ZMTZzkVA .
openssl passwd —1 —salt xxxxxxxx passwoptints $1Exxxxxxxx$UY Clxa628.9gXjpQCjM4a.

openssl passwd -aprl -—salt xxxxxxxx passwordprints $aprlIxxxxxxxx$dxHfLAsjHk-
DRmMG83UXe8KO0.

0.9.7c 2002-10-04 39

PKCS12(1) OpenSSL PKCS12(1)

NAME
pkcsl12 — PKCS#12 file utility

SYNOPSIS
openssl| pkcs1Z-export] [—chain] [-inkey filenamd [—certfile filenamg [-name namé [-caname
name [-in filename] [-out filename] [-noouf] [-nomacvel] [—-nocerty [—clcerts] [-cacertg
[-nokeys] [-info] [-deq [-des3 [-ided [-nodeg [—noiter] [-maciter] [-twopasd [—descer]
[-certpbe] [-keypbe] [-keyex] [-keysid [-password ard [—-passin ard [—-passout arg [-rand
file(s)]

DESCRIPTION
The pkcs12 command allows PKCS#12 files (sometimes referred teFxsfiles) to be created and
parsed. PKCS#12 files are used by several programs including Netga&#pandMsS Outlook.

COMMAND OPTIONS
There are a lot of options the meaning of some depends of whether a PKCS#12 file is being created or
parsed. By default a PKCS#12 file is parsed a PKCS#12 file can be created by usiagpthne
option (see below).

PARSING OPTIONS
—in filename
This specifies filename of the PKCS#12 file to be parsed. Standard input is used by default.

—out filename
The filename to write certificates and private keys to, standard output by default. They are all
written in PEM format.

—pass arg,—passin arg
the PKCS#12 file (i.e. input file) password source. For more information about the forangt of
see thePASS PHRASE ARGUMENTSsection inopenss(1).

—passout arg
pass phrase source to encrypt any outputed private keys with. For more information about the for-
mat ofarg see thePASS PHRASE ARGUMENTSsection inopenss(1).

—noout
this option inhibits output of the keys and certificates to the output file version of the PKCS#12
file.

—clcerts
only output client certificates (nGtA certificates).

—cacerts
only outputCA certificates (not client certificates).

—-nocerts
no certificates at all will be output.

—nokeys
no private keys will be output.

—info
output additional information about the PKCS#12 file structure, algorithms used and iteration
counts.

—-des
useDESto encrypt private keys before outputting.

—-des3
use tripleDESto encrypt private keys before outputting, this is the default.

-idea
uselDEA to encrypt private keys before outputting.

—-nodes
don’t encrypt the private keys at all.

40 2001-09-07 0.9.7c

PKCS12(1) OpenSSL PKCS12(1)

—nomacwer
don't attempt to verify the integritMAC before reading the file.

—-twopass
prompt for separate integrity and encryption passwords: most software always assumes these are
the same so this option will render such PKCS#12 files unreadable.

FILE CREATION OPTIONS
—export
This option specifies that a PKCS#12 file will be created rather than parsed.

—out filename
This specifies filename to write the PKCS#12 file to. Standard output is used by default.

—in filename
The filename to read certificates and private keys from, standard input by default. They must all
be inPEM format. The order doesn’'t matter but one private key and its corresponding certificate
should be present. If additional certificates are present they will also be included in the PKCS#12
file.

—inkey filename
file to read private key from. If not present then a private key must be present in the input file.

—name friendlyname
This specifies the “friendly name” for the certificate and private key. This name is typically dis-
played in list boxes by software importing the file.

—certfile filename
A filename to read additional certificates from.

—caname friendlyname
This specifies the “friendly name” for other certificates. This option may be used multiple times
to specify names for all certificates in the order they appear. Netscape ignores friendly names on
other certificates where8sIE displays them.

—pass arg,—passout arg
the PKCS#12 file (i.e. output file) password source. For more information about the foergat of
see thePASS PHRASE ARGUMENTSsection inopenss(l1).

—passin password
pass phrase source to decrypt any input private keys with. For more information about the format
of arg see thePASS PHRASE ARGUMENTSsection inopenss(1).

—chain
if this option is present then an attempt is made to include the entire certificate chain of the user
certificate. The standai@A store is used for this search. If the search fails it is considered a fatal
error.

—descert
encrypt the certificate using trip2ES, this may render the PKCS#12 file unreadable by some
“export grade” software. By default the private key is encrypted using tbpieand the certifi-
cate using 40 biRC2

—keypbe alg,—certpbe alg
these options allow the algorithm used to encrypt the private key and certificates to be selected.
Although any PKCS#5 v1.5 or PKCS#12 algorithms can be selected it is advisable only to use
PKCS#12 algorithms. See the list in H@TES section for more information.

—keyexzkeysig
specifies that the private key is to be used for key exchange or just signing. This option is only
interpreted byMSIE and similarMS software. Normally “export grade” software will only allow
512 bitRSA keys to be used for encryption purposes but arbitrary length keys for signing. The
—keysigoption marks the key for signing only. Signing only keys can be used for S/IMIME sign-
ing, authenticode (ActiveX control signing) aséL client authentication, however due to a bug
only MSIE 5.0 and later support the use of signing only keys8&irclient authentication.

0.9.7c 2001-09-07 41

PKCS12(1) OpenSSL PKCS12(1)

—nomaciter, —noiter
these options affect the iteration counts onmMi#eC and key algorithms. Unless you wish to pro-
duce files compatible witkiSIE 4.0 you should leave these options alone.

To discourage attacks by using large dictionaries of common passwords the algorithm that derives
keys from passwords can have an iteration count applied to it: this causes a certain part of the
algorithm to be repeated and slows it down. Wi is used to check the file integrity but since it

will normally have the same password as the keys and certificates it could also be attacked. By
default bothMAC and encryption iteration counts are set to 2048, using these optionadhand
encryption iteration counts can be set to 1, since this reduces the file security you should not use
these options unless you really have to. Most software supportsMaathand key iteration
counts. MSIE 4.0 doesn'’t suppoMAC iteration counts so it needs thromaciter option.

—maciter
This option is included for compatibility with previous versions, it used to be needed AQse
iterations counts but they are now used by default.

—rand file(s)
a file or files containing random data used to seed the random number generataGDisanket
(seeRAND_egd3)). Multiple files can be specified separated by a OS-dependent character. The
separator is for MS-Windows,, for OpenVMS, and for all others.

NOTES
Although there are a large number of options most of them are very rarely used. For PKCS#12 file
parsing only—in and —out need to be used for PKCS#12 file creati@xport and —name are also
used.

If none of the—clcerts, —cacertsor —nocertsoptions are present then all certificates will be output in

the order they appear in the input PKCS#12 files. There is no guarantee that the first certificate present
is the one corresponding to the private key. Certain software which requires a private key and certificate
and assumes the first certificate in the file is the one corresponding to the private key: this may not
always be the case. Using thelcerts option will solve this problem by only outputting the certificate
corresponding to the private key. If tba certificates are required then they can be output to a separate
file using the-nokeys —cacertoptions to just outputA certificates.

The —keypbe and —certpbe algorithms allow the precise encryption algorithms for private keys and
certificates to be specified. Normally the defaults are fine but occasionally software can't handle triple
DES encrypted private keys, then the optiekeypbe PBE-SHA1-RC2-40can be used to reduce the
private key encryption to 40 BRC2 A complete description of all algorithms is contained inpkes8

manual page.

EXAMPLES
Parse a PKCS#12 file and output it to a file:

openssl pkcs12 -in file.p12 -out file.pem
Output only client certificates to a file:
openssl pkcs12 -in file.p12 -clcerts -out file.pem
Don't encrypt the private key:
openssl pkcs12 -in file.p12 -out file.pem -nodes
Print some info about a PKCS#12 file:
openssl pkcs12 -in file.p12 -info -noout
Create a PKCS#12 file:
openssl pkcs12 -export -in file.pem -out file.p12 -name "My Certificate"
Include some extra certificates:

openssl pkcs12 -export -in file.pem -out file.p12 -name "My Certificate" \
-certfile othercerts.pem

BUGS
Some would argue that the PKCS#12 standard is one big bug :-)

Versions of OpenSSL before 0.9.6a had a bug in the PKCS#12 key generation routines. Under rare

42 2001-09-07 0.9.7c

PKCS12(1) OpenSSL PKCS12(1)

circumstances this could produce a PKCS#12 file encrypted withvalidirkey. As a result some
PKCS#12 files which triggered this bug from other implementatimi$$s or Netscape) could not be
decrypted by OpenSSL and similarly OpenSSL could produce PKCS#12 files which could not be
decrypted by other implementations. The chances of producing such a file are relatively small: less than
1in 256.

A side effect of fixing this bug is that any old invalidly encrypted PKCS#12 files cannot no longer be
parsed by the fixed version. Under such circumstancgsktsd 2utility will report that theMAC is OK
but fail with a decryption error when extracting private keys.

This problem can be resolved by extracting the private keys and certificates from the PKCS#12 file
using an older version of OpenSSL and recreating the PKCS#12 file from the keys and certificates
using a newer version of OpenSSL. For example:

old-openssl -in bad.p12 -out keycerts.pem
openssl -in keycerts.pem -export -name "My PKCS#12 file" -out fixed.p12

SEE ALSO

0.9.7c

pkcs§(1)

2001-09-07 43

PKCS7(1) OpenSsSL PKCS7(1)

NAME

pkcs7 — PKCS#7 utility

SYNOPSIS

openssl pkcs7[-inform PEMIDER] [-outform PEMIDER] [-in filenamg [-out filenamd
[-print_certs] [-text] [-noout] [-engine id

DESCRIPTION

Thepkcs7command processes PKCS#7 file®ER or PEM format.

COMMAND OPTIONS

—inform DEROPEM
This specifies the input formabER format isDER encoded PKCS#7 v1.5 structiREM (the
default) is a base64 encoded version oftgd form with header and footer lines.

—outform DERIPEM
This specifies the output format, the options have the same meaning-agdha option.

—in filename
This specifies the input filename to read from or standard input if this option is not specified.

—out filename
specifies the output filename to write to or standard output by default.

—print_certs
prints out ag certificates or CRLs contained in the file. They are preceded by their subject and
issuer names in one line format.

—text
prints out certificates details in full rather than just subject and issuer names.

—noout
don’t output the encoded version of the PKCS#7 structure (or certificatpsns certs is set).

—engine id
specifying an engine (by it's unique string) will causaeq to attempt to obtain a functional ref-
erence to the specified engine, thus initialising it if needed. The engine will then be set as the
default for all available algorithms.

EXAMPLES

Convert a PKCS#7 file frolREM to DER:

openssl pkcs7 -in file.pem -outform DER -out file.der
Output all certificates in a file:

openssl pkcs7 -in file.pem -print_certs -out certs.pem

NOTES

ThePEM PKCS#7 format uses the header and footer lines:

RESTRICTIONS

There is no option to print out all the fields of a PKCS#7 file.

This PKCS#7 routines only understand PKCS#7 v 1.5 as specifieeda315they cannot currently
parse, for example, the n&@wsS as described iRFC2630

SEE ALSO

44

crli2pkes7(1)

2003-01-30 0.9.7c

PKCSS8(1) OpenSSL PKCS8(1)

NAME
pkcs8 — PKCS#8 format private key conversion tool

SYNOPSIS
openssl| pkcsg-topk8] [—inform PEM [DER] [—outform PEMI[DER] [-in filenamg] [-passin arg
[-out filename] [-passout arg] Fnoiter] [-nocrypt] [-noocf] [-embed] [-nsdb] [-v2 alg] [-V1 alg]
[-engine id]

DESCRIPTION
The pkcs8 command processes private keys in PKCS#8 format. It can handle both unencrypted
PKCS#8 PrivateKeylnfo format and EncryptedPrivateKeylnfo format with a variety of PKCS#5 (v1.5
and v2.0) and PKCS#12 algorithms.

COMMAND OPTIONS
—topk8
Normally a PKCS#8 private key is expected on input and a traditional format private key will be
written. With the—topk8 option the situation is reversed: it reads a traditional format private key
and writes a PKCS#8 format key.

—inform DERCOPEM
This specifies the input format. If a PKCS#8 format key is expected on input then d@ittRroa
PEM encoded version of a PKCS#8 key will be expected. OtherwiseEReor PEM format of
the traditional format private key is used.

—outform DERIPEM
This specifies the output format, the options have the same meaning-agdha option.

—in filename
This specifies the input filename to read a key from or standard input if this option is not specified.
If the key is encrypted a pass phrase will be prompted for.

—passin arg
the input file password source. For more information about the formatgofee thePASS
PHRASE ARGUMENTS section inopenss(1).

—out filename
This specifies the output filename to write a key to or standard output by default. If any encryption
options are set then a pass phrase will be prompted for. The output filenamersticagdthe
same as the input filename.

—passout arg
the output file password source. For more information about the fornmaigdee thePASS
PHRASE ARGUMENTS section inopenss(1).

—-nocrypt
PKCS#8 keys generated or input are normally PKCS#8 EncryptedPrivateKeyInfo structures using
an appropriate password based encryption algorithm. With this option an unencrypted Pri-
vateKeylInfo structure is expected or output. This option does not encrypt private keys at all and
should only be used when absolutely necessary. Certain software such as some versions of Java
code signing software used unencrypted private keys.

—-nooct
This option generateRSA private keys in a broken format that some software uses. Specifically
the private key should be enclosed iI@GTET STRINGbut some software just includes the struc-
ture itself without the surroundir@CTET STRING

—embed
This option generateBSA keys in a broken format. THESA parameters are embedded inside the
PrivateKey structure. In this form tl@&CTET STRINGcontains arASN1 SEQUENCEconsisting of
two structures: SEQUENCEcontaining the parameters andA8N1 INTEGERcontaining the pri-
vate key.

-nsdb
This option generateBSA keys in a broken format compatible with Netscape private key data-
bases. The PrivateKey contains SEQUENCE consisting of the public and private keys

0.9.7c 2003-01-30 45

PKCSS8(1) OpenSSL PKCS8(1)

respectiely.

-v2 alg
This option enables the use of PKCS#5 v2.0 algorithms. Normally PKCS#8 private keys are
encrypted with the password based encryption algorithm cpledVithMD5ANdDES-CBC
this uses 56 bIDES encryption but it was the strongest encryption algorithm supported in
PKCS#5 v1.5. Using thev2 option PKCS#5 v2.0 algorithms are used which can use any encryp-
tion algorithm such as 168 bit tripi¥ES or 128 bitRC2 however not many implementations sup-
port PKCS#5 v2.0 yet. If you are just using private keys with OpenSSL then this doesn’t matter.

The alg argument is the encryption algorithm to use, valid values inadlededes3andrc2. It is
recommended thates3is used.

-v1 alg
This option specifies a PKCS#5 v1.5 or PKCS#12 algorithm to use. A complete list of possible
algorithms is included below.

—engine id
specifying an engine (by it's unique string) will causaeq to attempt to obtain a functional ref-

erence to the specified engine, thus initialising it if needed. The engine will then be set as the
default for all available algorithms.

NOTES
The encrypted form of BREM encode PKCS#8 files uses the following headers and footers:

Private keys encrypted using PKCS#5 v2.0 algorithms and high iteration counts are more secure that
those encrypted using the traditional SSLeay compatible formats. So if additional security is considered
important the keys should be converted.

The default encryption is only 56 bits because this is the encryption that most current implementations
of PKCS#8 will support.

Some software may use PKCS#12 password based encryption algorithms with PKCS#8 format private
keys: these are handled automatically but there is no option to produce them.

It is possible to write OUDER encoded encrypted private keys in PKCS#8 format because the encryp-
tion details are included at asN1 level whereas the traditional format includes themRiE level.

PKCS#5 v1.5 and PKCS#12 algorithms.
Various algorithms can be used with thel command line option, including PKCS#5 v1.5 and
PKCS#12. These are described in more detail below.
PBE-MD2-DES PBE-MD5-DES
These algorithms were included in the original PKCS#5 v1.5 specification. They only offer 56
bits of protection since they both USES.

PBE-SHA1-RC2-64 PBE-MD2-RC2-64 PBE-MD5-RC2-64 PBE-SHA1-DES
These algorithms are not mentioned in the original PKCS#5 v1.5 specification but they use the
same key derivation algorithm and are supported by some software. They are mentioned in
PKCS#5 v2.0. They use either 64 Rt2or 56 bitDES.

PBE-SHA1-RC4-128 PBE-SHA1-RC4-40 PBE-SHA1-3DES PBE-SHA1-2DES PBE-SHA1-RC2-128
PBE-SHA1-RC2-40

These algorithms use the PKCS#12 password based encryption algorithm and allow strong
encryption algorithms like tripl@ESor 128 bitRC2to be used.

EXAMPLES
Convert a private from traditional to PKCS#5 v2.0 format using tDge:

openssl pkcs8 -in key.pem -topk8 -v2 des3 -out enckey.pem
Convert a private key to PKCS#8 using a PKCS#5 1.5 compatible algobtg (

46 2003-01-30 0.9.7c

PKCSS8(1) OpenSSL PKCS8(1)

openssl pkcs8 -in key.pem -topk8 -out enckey.pem
Corvert a private key to PKCS#8 using a PKCS#12 compatible algorithm (3DES):
openssl pkcs8 -in key.pem -topk8 -out enckey.pem -v1 PBE-SHA1-3DES
Read eDER unencrypted PKCS#8 format yaite key:
openssl pkcs8 -inform DER -nocrypt -in key.der -out key.pem
Convert a private key from any PKCS#8 format to traditional format:
openssl pkcs8 -in pk8.pem -out key.pem
STANDARDS
Test vectors from this PKCS#5 v2.0 implementation were posted to the pkcs-tng mailing list using
triple DES, DES and RC2 with high iteration counts, several people confirmed that they could decrypt

the private keys produced and Therefore it can be assumed that the PKCS#5 v2.0 implementation is
reasonably accurate at least as far as these algorithms are concerned.

The format of PKCS#®SA (and other) private keys is not well documented: it is hidden away in
PKCS#11 v2.01, section 11.9. OpenSSL's defaghh PKCS#8 private key format complies with this
standard.

BUGS
There should be an option that prints out the encryption algorithm in use and other details such as the
iteration count.

PKCS#8 using tripl®ES and PKCS#5 v2.0 should be the default private key format for OpenSSL.: for
compatibility several of the utilities use the old format at present.

SEE ALSO
dsa(1), rsa(1), genrsal), gendsg1)

0.9.7c 2003-01-30 47

RAND(1) OpenSSL RAND(1)

NAME
rand — generate pseudo-random bytes

SYNOPSIS
openssl rand[-out file] [-rand file(s)] [-base64 hum

DESCRIPTION
The rand command outputsium pseudo-random bytes after seeding the random number generator
once. As in otheppensslcommand line toolsPRNG seeding uses the fiBsHOME/rd or .rnd in
addition to the files gen in the-rand option. A new$HOME.rnd or .rnd file will be written back if
enough seeding was obtained from these sources.

OPTIONS
—out file
Write tofile instead of standard output.

—rand file(s)
Use specified file or files @GD socket (se®RAND_egd3)) for seeding the random number gen-

erator. Multiple files can be specified separated by a OS-dependent character. The separator is
for MS—Windows,, for OpenVMS, and for all others.

—-base64
Perform base64 encoding on the output.

SEE ALSO
RAND_byte$3)

48 2001-09-07 0.9.7c

REQ(1) OpenSSL REQ(1)

NAME
req — PKCS#10 certificate request and certificate generating utility.

SYNOPSIS
openssl req[-inform PEM [DER] [-outform PEMIDER] [-in filename] [-passin arg [—out file-
name| [—passout arg] Ftext] [-pubkey] [-noouf] [-verify] [-modulug] [-new] [-rand file(s)]
[-newkey rsa:bits] [-newkey dsa:file] Fnodeg [-key filenamg [-keyform PEM[DER] [-keyout
filename] [-[md5Cshalid2Cimdc2]] [-config filenamé [-subj arg] [-x509 [-days [—set_serial
n] [-asnl-kludge] Fnewhdr] [-extensions sectioh [-regexts sectioh [-utf8] [-nameop]
[-batch] [-verbose] Fengine id]

DESCRIPTION
Thereqg command primarily creates and processes certificate requests in PKCS#10 format. It can addi-
tionally create self signed certificates for use as root CAs for example.

COMMAND OPTIONS
—inform DERCOPEM
This specifies the input format. TBER option uses aASN1 DERencoded form compatible with
the PKCS#10. TheEM form is the default format: it consists of theR format base64 encoded
with additional header and footer lines.

—outform DERIPEM
This specifies the output format, the options have the same meaning-agdha option.

—in filename
This specifies the input filename to read a request from or standard input if this option is not speci-
fied. A request is only read if the creation optionsefv and—newkey) are not specified.

—passin arg
the input file password source. For more information about the formatgofee thePASS
PHRASE ARGUMENTS section inopenss(1).

—out filename
This specifies the output filename to write to or standard output by default.

—passout arg
the output file password source. For more information about the fornmaigdee thePASS
PHRASE ARGUMENTS section inopenss(1).

—text
prints out the certificate request in text form.

—pubkey
outputs the public key.

—noout
this option prevents output of the encoded version of the request.

—modulus
this option prints out the value of the modulus of the public key contained in the request.

-verify
verifies the signature on the request.

-new
this option generates a new certificate request. It will prompt the user for the relevant field values.
The actual fields prompted for and their maximum and minimum sizes are specified in the config-
uration file and any requested extensions.

If the —key option is not used it will generate a nBSA private key using information specified in
the configuration file.

—rand file(s)
a file or files containing random data used to seed the random number generataGDisanket

(seeRAND_egd3)). Multiple files can be specified separated by a OS-dependent character. The
separator is for MS-Windows,, for OpenVMS, and for all others.

0.9.7c 2003-01-30 49

REQ(1) OpenSSL REQ(1)

—newkey arg
this option creates a new certificate request and a new private key. The argument takes one of two
forms. rsa:nbits, wherenbits is the number of bits, generatesR®A key nbits in size.dsa:file-
namegenerates BSA key using the parameters in the filename

—key filename
This specifies the file to read the private key from. It also accepts PKCS#8 format private keys for
PEM format files.

—keyform PEMICDER
the format of the private key file specified in tHeey argumentPEMis the default.

—keyout filename
this gives the filename to write the newly created private key to. If this option is not specified then
the filename present in the configuration file is used.

-nodes
if this option is specified then if a private key is created it will not be encrypted.

—[md5Cshallfnd2ihdc2]
this specifies the message digest to sign the request with. This overrides the digest algorithm spec-
ified in the configuration file. This option is ignored BBA requests: they always uSelAL

—config filename
this allows an alternative configuration file to be specified, this overrides the compile time file-
name or any specified in tIIPENSSL_CONFenvironment variable.

-subj arg
sets subject name for new request or supersedes the subject name when processing a request. The
arg must be formatted dtypeO=valueO/typel=valuel/type2s.characters may be escaped by \
(backslash), no spaces are skipped.

-x509
this option outputs a self signed certificate instead of a certificate request. This is typically used to
generate a test certificate or a self signed @@otThe extensions added to the certificate (if any)
are specified in the configuration file. Unless specified usingetheerialoption O will be used
for the serial number.

—days n
when the-x509option is being used this specifies the number of days to certify the certificate for.
The default is 30 days.

—set_serial n
serial number to use when outputting a self signed certificate. This may be specified as a decimal
value or a hex value if preceded @y. It is possible to use negative serial numbers but this is not
recommended.

—extensions section

—reqexts section
these options specify alternative sections to include certificate extensions-{¥50@option is
present) or certificate request extensions. This allows several different sections to be used in the
same configuration file to specify requests for a variety of purposes.

—utf8
this option causes field values to be interpretedTas strings, by default they are interpreted as
ASCII. This means that the field values, whether prompted from a terminal or obtained from a con-
figuration file, must be validTF8 strings.

—nameopt option
option which determines how the subject or issuer names are displayesptiimargument can
be a single option or multiple options separated by commas. Alternativehnémeeopt switch
may be used more than once to set multiple options. Se&@8€L) manual page for details.

—asnl-kludge
by default thereq command outputs certificate requests containing no attributes in the correct
PKCS#10 format. However certain CAs will only accept requests containing no attributes in an
invalid form: this option produces this invalid format.

50 2003-01-30 0.9.7c

REQ(1)

OpenSSL REQ(1)

More precisely theAttributes in a PKCS#10 certificate request are defined &&E@a OF
Attribute. They arenot OPTIONAL so if no attributes are present then they should be encoded as
an emptySET OF. The invalid form does not include the empiT OF whereas the correct form
does.

It should be noted that very few CAs still require the use of this option.

—newhdr
Adds the wordNEW to the PEM file header and footer lines on the outputed request. Some soft-
ware (Netscape certificate server) and some CAs need this.

—batch
non-interactive mode.

-verbose
print extra details about the operations being performed.

—engine id
specifying an engine (by it's unique string) will causaeq to attempt to obtain a functional ref-
erence to the specified engine, thus initialising it if needed. The engine will then be set as the
default for all available algorithms.

CONFIGURATION FILE FORMAT

0.9.7c

The configuration options are specified in thg section of the configuration file. As with all configu-
ration files if no value is specified in the specific section rgg) then the initial unnamed atefault
section is searched too.

The options available are described in detail below.

input_password output_password
The passwords for the input private key file (if present) and the output private key file (if one will
be created). The command line optipassinandpassoutoverride the configuration file values.

default_bits
This specifies the default key size in bits. If not specified then 512 is used. It is usedniéthe
option is used. It can be overridden by using-thewkeyoption.

default_keyfile
This is the default filename to write a private key to. If not specified the key is written to standard
output. This can be overridden by tHeeyout option.

oid_file
This specifies a file containing additiom@BJECT IDENTIFIERS . Each line of the file should
consist of the numerical form of the object identifier followed by white space then the short name
followed by white space and finally the long name.

oid_section
This specifies a section in the configuration file containing extra object identifiers. Each line
should consist of the short name of the object identifier followed bpd the numerical form.
The short and long names are the same when this option is used.

RANDFILE
This specifies a filename in which random number seed information is placed and read from, or an
EGD socket (se®RAND_egd3)). Itis used for private key generation.

encrypt_key
If this is set tono then if a private key is generated itnist encrypted. This is equivalent to the
—nodescommand line option. For compatibilignecrypt_rsa_keyis an equivalent option.

default_md
This option specifies the digest algorithm to use. Possible values imtiElshal mdc2If not
present theimD5 is used. This option can be overridden on the command line.

string_mask
This option masks out the use of certain string types in certain fields. Most users will not need to
change this option.

It can be set to several valudsfault which is also the default option uses PrintableStrings,
T61Strings and BMPStrings if thakix value is used then only PrintableStrings and BMPStrings

2003-01-30 51

REQ(1)

OpenSSL REQ(1)

will be used. This follas thePKIX recommendation iRFC2459 If the utf8only option is used

then only UTF8Strings will be used: this is tAEIX recommendation iflRFC2459after 2003.
Finally thenombstr option just uses PrintableStrings and T61Strings: certain software has prob-
lems with BMPStrings and UTF8Strings: in particular Netscape.

req_extensions
this specifies the configuration file section containing a list of extensions to add to the certificate
request. It can be overridden by thregextscommand line switch.

x509_extensions
this specifies the configuration file section containing a list of extensions to add to certificate gen-
erated when thex509 switch is used. It can be overridden by trextensionscommand line
switch.

prompt
if set to the valueno this disables prompting of certificate fields and just takes values from the
config file directly. It also changes the expected format ofltstinguished_nameandattributes
sections.

utfg8
if set to the valugresthen field values to be interpreted &8 strings, by default they are inter-
preted aASCII. This means that the field values, whether prompted from a terminal or obtained
from a configuration file, must be valitf F8 strings.

attributes
this specifies the section containing any request attributes: its format is the satistinas
guished_name. Typically these may contain the challengePassword or unstructuredName types.
They are currently ignored by OpenSSL's request signing utilities but some CAs might want them.

distinguished_name

This specifies the section containing the distinguished name fields to prompt for when generating
a certificate or certificate request. The format is described in the next section.

DISTINGUISHED NAME AND ATTRIBUTE SECTION FORMAT

52

There are two separate formats for the distinguished name and attribute sectiornrolfiiteoption
is set tono then these sections just consist of field names and values: for example,

CN=My Name
OU=My Organization
emailAddress=someone@somewhere.org

This allows external programs (e@Ul based) to generate a template file with all the field names and
values and just pass it teq. An example of this kind of configuration file is contained in EX&M-
PLES section.

Alternatively if theprompt option is absent or not setnio then the file contains field prompting infor-
mation. It consists of lines of the form:

fieldName="prompt"
fieldName_default="default field value"
fieldName_min= 2

fieldName_max= 4

“fieldName” is the field name being used, for example commonNameNpr The “prompt” string is

used to ask the user to enter the relevant details. If the user enters nothing then the default value is used
if no default value is present then the field is omitted. A field can still be omitted if a default value is
present if the user just enters the '’ character.

The number of characters entered must be between the fieldName_min and fieldName_max limits:
there may be additional restrictions based on the field being used (for example countryName can only
ever be two characters long and must fit in a PrintableString).

Some fields (such as organizationName) can be used more than ore. ifitas presents a problem
because configuration files will not recognize the same name occurring twice. To avoid this problem if
the fieldName contains some characters followed by a full stop they will be ignored. So for example a
second organizationName can be input by calling it “1.organizationName”.

The actual permitted field names are any object identifier short or long names. These are compiled into

2003-01-30 0.9.7c

REQ(1) OpenSSL REQ(1)

OpenSSL and include the usualwes such as commonName, countryName, localityName, organiza-
tionName, organizationUnitName, stateOrProvinceName. Additionally emailAddress is include as well
as name, surname, givenName initials and dnQualifier.

Additional object identifiers can be defined with the file or oid_sectionoptions in the configuration
file. Any additional fields will be treated as though they were a DirectoryString.

EXAMPLES
Examine and verify certificate request:

openssl req -in req.pem -text -verify -noout
Create a private key and then generate a certificate request from it:

openssl genrsa -out key.pem 1024
openssl req -new -key key.pem -out req.pem

The same but just using req:

openssl req -newkey rsa:1024 -keyout key.pem -out req.pem
Generate a self signed root certificate:

openssl req -x509 -newkey rsa:1024 -keyout key.pem -out req.pem
Example of a file pointed to by tleéd_file option:

1.2.34 shortName A longer Name
1.2.3.6 otherName Other longer Name

Example of a section pointed to b sectionmaking use of variable expansion:

testoid1=1.2.3.5
testoid2=%${testoid1}.6

Sample configuration file prompting for field values:

[req]

default_bits = 1024

default_keyfile = privkey.pem
distinguished_name = req_distinguished_name
attributes = req_attributes
x509_extensions = v3 ca

dirstring_type = nobmp
[req_distinguished_name]

countryName = Country Name (2 letter code)
countryName_ default = AU

countryName_min =2

countryName_max =2

localityName = Locality Name (eg, city)
organizationalUnitName = Organizational Unit Name (eg, section)

commonName
commonName_max

Common Name (eg, YOUR name)
64

Email Address
40

emailAddress
emailAddress_max

[req_attributes]

challengePassword = A challenge password
challengePassword_min =4
=2

challengePassword_max 0

[v3 ca]

subjectKeyldentifier=hash
authorityKeyldentifier=keyid:always,issuer:always
basicConstraints = CA:true

Sample configuration containing all field values:

0.9.7c 2003-01-30 53

REQ(1) OpenSSL REQ(1)

RANDFILE = $ENV:HOME/.rnd
[req]

default_bits = 1024

default_keyfile = keyfile.pem
distinguished_name = req_distinguished_name
attributes = req_attributes

prompt = no

output_password = mypass

[req_distinguished_name]
C = GB

ST = Test State or Province

L = Test Locality

@] = Organization Name

ou = Organizational Unit Name
CN = Common Name
emailAddress = test@email.address

[req_attributes]
challengePassword = A challenge password

NOTES
The header and footer lines in theéM format are normally:

which is produced with thenewhdr option but is otherwise compatible. Either form is accepted
transparently on input.

The certificate requests generated Xgnroll with MSIE have extensions added. It includes the
keyUsageextension which determines the type of key (signature only or general purpose) and any
additional OIDs entered by the script in an extendedKeyUsage extension.

DIAGNOSTICS
The following messages are frequently asked about:

Using configuration from /some/path/openssl.cnf
Unable to load config info

This is followed some time later by...

unable to find 'distinguished_name’ in config
problems making Certificate Request

The first error message is the clue: it can't find the configuration file! Certain operations (like examin-
ing a certificate request) don't need a configuration file so its use isn’'t enforced. Generation of certifi-
cates or requests however does need a configuration file. This could be regarded as a bug.

Another puzzling message is this:

Attributes:
a0:00

this is displayed when no attributes are present and the request includes the corre&EaNqEy
structure (thédER encoding of which is 0xa0 0x00). If you just see:

Attributes:
then theSET OF is missing and the encoding is technically invalid (but it is tolerated). See the descrip-
tion of the command line optiorasn1-kludgefor more information.

ENVIRONMENT VARIABLES
The variableOPENSSL_CONFif defined allows an alternative configuration file location to be speci-
fied, it will be overridden by theconfigcommand line switch if it is present. For compatibility reasons

54 2003-01-30 0.9.7c

REQ(1) OpenSSL REQ(1)

the SSLEAY_CONF ervironment variable serves the same purpose but its use is discouraged.

BUGS
OpenSSl's handling of T61Strings (aka TeletexStrings) is broken: it effectively treats them as
ISO-8859-1(Latin 1), Netscape andSIE have similar behaviour. This can cause problems if you need
characters that aren't available in PrintableStrings and you don’t want to or can’'t use BMPStrings.

As a consequence of the T61String handling the only correct way to represent accented characters in
OpenSSL is to use a BMPString: unfortunately Netscape currently chokes on these. If you have to use
accented characters with Netscape ®FIS(E then you currently need to use the invalid T61String form.

The current prompting is noewy friendly. It doesn'’t allow you to confirm what you've just entered.
Other things like extensions in certificate requests are statically defined in the configuration file. Some
of these: like an email address in subjectAltName should be input by the user.

SEE ALSO
x509(1), ca(1), genrsa1), gendsd1l), config(5)

0.9.7c 2003-01-30 55

RSA(1) OpenSSL RSA(1)

NAME
rsa — RSA key processing tool

SYNOPSIS
openssl rsg-inform PEM [INETIDER] [-outform PEMMET [DER] [-in filenamg [-passin arg
[-out filename] [-passout arg] Fsgckey] Fdes] [-des3 [-ided [-text] [-noout] [-modulus]
[-checK] [-pubin] [-pubout] [-engine id

DESCRIPTION
Thersa command process&SA keys. They can be converted between various forms and their compo-
nents printed outiNote this command uses the traditional SSLeay compatible format for private key
encryption: newer applications should use the more secure PKCS#8 format ugikcsthatility.

COMMAND OPTIONS
—inform DERONETCPEM
This specifies the input format. TBER option uses aASN1 DERencoded form compatible with
the PKCS#1 RSAPrivateKey or SubjectPublicKeylnfo format. PE® form is the default for-
mat: it consists of th®ER format base64 encoded with additional header and footer lines. On
input PKCS#8 format private keys are also accepted NETeform is a format is described in the
NOTES section.

—outform DERMNETOPEM
This specifies the output format, the options have the same meaning-agdha option.

—in filename
This specifies the input filename to read a key from or standard input if this option is not specified.
If the key is encrypted a pass phrase will be prompted for.

—passin arg
the input file password source. For more information about the formatgofee thePASS
PHRASE ARGUMENTS section inopenss(1).

—out filename
This specifies the output filename to write a key to or standard output if this option is not speci-

fied. If any encryption options are set then a pass phrase will be prompted for. The output filename

shouldnot be the same as the input filename.

—passout password
the output file password source. For more information about the fornmaigdee thePASS
PHRASE ARGUMENTS section inopenss(1).

—-sgckey
use the modifiedlET algorithm used with some versions of MicroditandSGCkeys.

—des@des3Fidea
These options encrypt the private key with IS, triple DES, or theIDEA ciphers respectively
before outputting it. A pass phrase is prompted for. If none of these options is specified the key is
written in plain text. This means that using tisa utility to read in an encrypted key with no

encryption option can be used to remove the pass phrase from a key, or by setting the encryption

options it can be use to add or change the pass phrase. These options can only be Beét with
format output files.

—text
prints out the various public or private key components in plain text in addition to the encoded ver-
sion.

—noout
this option prevents output of the encoded version of the key.

—modulus
this option prints out the value of the modulus of the key.

—-check
this option checks the consistency ofR®A private key.

56 2003-01-30 0.9.7c

RSA(1) OpenSSL RSA(1)

—pubin
by default a private key is read from the input file: with this option a public key is read instead.

—pubout
by default a private key is output: with this option a public key will be output instead. This option
is automatically set if the input is a public key.

—engine id
specifying an engine (by it's unique string) will causaeq to attempt to obtain a functional ref-
erence to the specified engine, thus initialising it if needed. The engine will then be set as the
default for all available algorithms.

NOTES
ThePEM private key format uses the header and footer lines:

TheNET form is a format compatible with older Netscape servers and Micrisokey files, this uses
unsaltedRC4for its encryption. It is not very secure and so should only be used when necessary.

Some newer version &S have additional data in the exported .key files. To use these with the utility,
view the file with a binary editor and look for the string “private—key”, then trace back to the byte
sequence 0x30, 0x82 (this is asN1 SEQUENCE Copy all the data from this point onwards to
another file and use that as the input torfizeutility with the —inform NET option. If you get an error
after entering the password try thegckeyoption.

EXAMPLES
To remove the pass phrase orR&A private key:

openssl rsa -in key.pem -out keyout.pem
To encrypt a private key using trigbES:
openssl rsa -in key.pem -des3 -out keyout.pem
To convert a private key froPEMto DER format:
openssl rsa -in key.pem -outform DER -out keyout.der
To print out the components of a private key to standard output:
openssl rsa -in key.pem -text -noout
To just output the public part of a private key:
openssl rsa -in key.pem -pubout -out pubkey.pem

BUGS
The command line password arguments don’t currently workéth format.

There should be an option that automatically handles .key files, without having to manually edit them.

SEE ALSO
pkcs§1), dsa(l), genrsa1), gendsd1)

0.9.7c 2003-01-30 57

RSAUTL(1) OpenSSL RSAUTL(1)

NAME
rsautl — RSA utility

SYNOPSIS
openssl rsautl[-in file] [-out file] [-inkey file] [-pubin] [—certin] [—sign] [-verify] [-encrypt]
[-decrypt] [-pkes] [-ssl] [-raw] [-hexdump] [-ashlparsé

DESCRIPTION
Thersautl command can be used to sign, verify, encrypt and decrypt data usiRgAladgorithm.

COMMAND OPTIONS
—in filename
This specifies the input filename to read data from or standard input if this option is not specified.

—out filename
specifies the output filename to write to or standard output by default.

—inkey file
the input key file, by default it should be RBA private key.

—pubin
the input file is aRSA public key.

—certin
the input is a certificate containing &BA public key.

—sign
sign the input data and output the signed result. This requiregSsngrivate key.

-verify
verify the input data and output the recovered data.

—encrypt
encrypt the input data using RSA public key.

—decrypt
decrypt the input data using RSA private key.

—pkcs, —oaep, —ssl, —raw
the padding to use: PKCS#1 v1.5 (the default), PKCS##P, special padding used BSL v2
backwards compatible handshakes, or no padding, respectively. For signaturegkesiand
—raw can be used.

—hexdump
hex dump the output data.

—asnlparse
asnlparse the output data, this is useful when combined wittvehiéy option.

NOTES
rsautl because it uses thRSA algorithm directly can only be used to sign or verify small pieces of
data.

EXAMPLES
Sign some data using a private key:

openssl rsautl -sign -in file -inkey key.pem -out sig
Recover the signed data

openssl rsautl -verify -in sig -inkey key.pem
Examine the raw signed data:

openssl rsautl -verify -in file -inkey key.pem -raw -hexdump

58 2001-04-25 0.9.7c

RSAUTL(1) OpenSSL RSAUTL(1)

0.9.7c

0000 - 00 O1 ff ff ff ff ff ff-ff fE FE 6 EEE6F6 66
0010 - ff ff ff ff ff ff ff ff-ff SO SEAEAECAAF ...l

0020 - ff ff ff ff ff ff ff ff-ff ffEESEEAECFFF ..ol

0030 - ff ff ff ff ff ff ff ff-ff fffESEEEAECFFF ...l

0040 - ff ff ff ff ff ff ff ff-ff fFEEAEAEAECEAF oeeeel

0050 - ff ff ff ff ff ff ff ff-ff ffEESEEEAECFFF ...l

0060 - ff ff ff ff ff ff ff ff-ff ffEESEEEFEEFFF ...l

0070 - ff ff ff ff 00 68 65 6¢-6¢ 6f 20 77 6f 726Cc 64 hello world

The PKCS#1 block formatting is evident from this. If this was done using encrypt and decrypt the
block would have been of type 2 (the second byte) and random padding data visible instead of the Oxff
bytes.

It is possible to analyse the signature of certificates using this utility in conjunctiomsmitiparse.
Consider the self signed example in certs/pca—cert.pem . Ruesidgarseas follows yields:

openssl asnlparse -in pca-cert.pem

0:d=0 hl=4 |=742 cons: SEQUENCE
4:d=1 hl=4 =591 cons: SEQUENCE

8d=2 hl=2 I= 3 cons: «cont[0]

10:d=3 hl=2 I= 1 prim: INTEGER :02

13:d=2 hl=2 I= 1 prim: INTEGER :00

16:d=2 hl=2 |I= 13 cons: SEQUENCE

18:d=3 hl=2 I= 9 prim: OBJECT :md5WithRSAEnNcryption
29:d=3 hl=2 I= 0 prim: NULL

31:d=2 hl=2 |= 92 cons: SEQUENCE
33:d=3 hl=2 I= 11 cons: SET

35:d=4 hl=2 |I= 9 cons: SEQUENCE

37.d=5 hl=2 I= 3 prim: OBJECT :countryName
42:d=5 hlI=2 1= 2 prim: PRINTABLESTRING AU

599:d=1 hl=2 |I= 13 cons: SEQUENCE

601:d=2 hl=2 I= 9 prim: OBJECT :md5WithRSAEnNcryption
612:d=2 hl=2 I= 0 prim: NULL

614:d=1 hI=3 I=129 prim: BIT STRING
The finalBIT STRING contains the actual signature. It can be extracted with:
openssl asnlparse -in pca-cert.pem -out sig -noout -strparse 614
The certificate public key can be extracted with:
openssl x509 -in test/testx509.pem -pubout -noout >pubkey.pem
The signature can be analysed with:
openssl rsautl -in sig -verify -asnlparse -inkey pubkey.pem -pubin

0:d=0 hl=2 |= 32 cons: SEQUENCE
2:d=1 hl=2 |I= 12 cons: SEQUENCE
4:d=2 hl=2 I= 8 prim: OBJECT :md5
14:d=2 hl=2 I= 0 prim: NULL
16:d=1 hI=2 I= 16 prim: OCTET STRING
0000 - f3 46 9e aa la 4a 73 c9-37 ea 93 00 48 25 08 b5 F...Js.7...H%..

This is the parsed version of ABN1 Digestinfo structure. It can be seen that the digest used was md5.
The actual part of the certificate that was signed can be extracted with:

openssl asnlparse -in pca-cert.pem -out ths -noout -strparse 4
and its digest computed with:

openssl md5 -c ths
MD5(ths)= f3:46:9e:aa:1a:4a:73:¢9:37:€a:93:00:48:25:08:b5

which it can be seen agrees with the recovered value above.

2001-04-25 59

RSAUTL(1) OpenSSL RSAUTL(1)

SEE ALSO
dgst(1), rsa(1), genrsal)

60 2001-04-25 0.9.7c

S_CLIENT(1) OpenSSL S_CLIENT(1)

NAME
s_client — SSL/TLS client program

SYNOPSIS
openssl s_clienf-connect host:port>] [-verify deptf [—cert filenamg [-key filename] FCApath
directory] [-CAfile filename] [-reconnec} [-pausqg [-showcert§ [-debug] [-msg] [-nbio_tesi
[-state] [—-nbio] [—crlf] [—-ign_eof] [-quiet] [-ssI] [—ssI] [-tls1] [-no_ssI2 [-no_ssI3 [-no_tIs]]
[-bugs] [-cipher cipherlist] [-starttls protocol] [—engine id [-rand file(s)]

DESCRIPTION
The s_clientcommand implements a geneB8SL/TLS client which connects to a remote host using
SSL/TLS ltis a veryuseful diagnostic tool faBSL servers.

OPTIONS
—connect host:port
This specifies the host and optional port to connect to. If not specified then an attempt is made to
connect to the local host on port 4433.

—cert certname
The certificate to use, if one is requested by the server. The default is not to use a certificate.

—key keyfile
The private key to use. If not specified then the certificate file will be used.

-verify depth
The verify depth to use. This specifies the maximum length of the server certificate chain and
turns on server certificate verification. Currently the verify operation continues after errors so all
the problems with a certificate chain can be seen. As a side effect the connection will never fail
due to a server certificate verify failure.

—CApath directory
The directory to use for server certificate verification. This directory must be in “hash format”,
seeverify for more information. These are also used when building the client certificate chain.

—CAfile file
A file containing trusted certificates to use during server authentication and to use when attempt-
ing to build the client certificate chain.

—reconnect
reconnects to the same server 5 times using the same sBssioa can be used as a test that ses-
sion caching is working.

—pause
pauses 1 second between each read and write call.

—-showcerts
display the whole server certificate chain: normally only the server certificate itself is displayed.

—prexit
print session information when the program exits. This will always attempt to print out informa-
tion even if the connection fails. Normally information will only be printed out once if the connec-
tion succeeds. This option is useful because the cipher in use may be renegotiated or the connec-
tion may fail because a client certificate is required or is requested only after an attempt is made to
access a certaidRL. Note: the output produced by this option is not always accurate because a
connection might never have been established.

—state
prints out theSSL session states.

—debug
print extensive debugging information including a hex dump of all traffic.

-msg
show all protocol messages with hex dump.

0.9.7c 2003-05-28 61

S_CLIENT(1) OpenSSL S_CLIENT(1)

—nbio_test

tests non-blocking 1/0
-nbio

turns on non-blocking 1/0

—crlf
this option translated a line feed from the terminal @Rs-LF as required by some servers.

—-ign_eof
inhibit shutting down the connection when end of file is reached in the input.
—quiet
inhibit printing of session and certificate information. This implicitly turns-igm_eofas well.
-ssl2,-ssl3,~tls1, —no_ssl2-no_ssl3-no_tIsl
these options disable the use of cer&dihor TLS protocols. By default the initial handshake uses
a method which should be compatible with all servers and permit them 8sus@, SSLv2 or
TLS as appropriate.

Unfortunately there are a lot of ancient and broken servers in use which cannot handle this tech-
nique and will fail to connect. Some servers only woridi$ is turned off with the-no_tlsoption
others will only supporsSLv2 and may need thessl2option.

-bugs
there are several known bug3sL andTLS implementations. Adding this option enables various
workarounds.

—cipher cipherlist
this allows the cipher list sent by the client to be modified. Although the server determines which
cipher suite is used it should take the first supported cipher in the list sent by the client. See the
cipherscommand for more information.

—starttls protocol
send the protocol-specific message(s) to switéh.&for communication.protocol is a keyword
for the intended protocol. Currently, the only supported keywords are “smtp” and “pop3”.

—engine id
specifying an engine (by it's unique string) will causes_clientto attempt to obtain a functional
reference to the specified engine, thus initialising it if needed. The engine will then be set as the
default for all available algorithms.

—rand file(s)
a file or files containing random data used to seed the random number generataGDisanket
(seeRAND_egd3)). Multiple files can be specified separated by a OS-dependent character. The
separator is for MS-Windows,, for OpenVMS, and for all others.

CONNECTED COMMANDS
If a connection is established with 88L server then any data received from the server is displayed and
any key presses will be sent to the server. When used interactively (which means-giteenor
—ign_eofhave been given), the session will be renegotiated if the line begins Whaaud if the line
begins with & or if end of file is reached, the connection will be closed down.

NOTES
s_clientcan be used to deb&§$L servers. To connect to &sL HTTPserver the command:

openssl s_client -connect servername:443

would typically be used (https uses port 443). If the connection succeeds tHemRacommand can
be given such asGET /" to retrieve a web page.

If the handshake fails then there are several possible causes, if it is nothing obvious like no client cer-
tificate then the-bugs, —ssl2,-sslI3 -tlsl, —no_ssl2 —no_sslI3 —no_tls1 can be tried in case it is a
buggy server. In particular you should play with these optmefere submitting a bug report to an
OpenSSL mailing list.

A frequent problem when attempting to get client certificates working is that a web client complains it
has no certificates or gives an empty list to choose from. This is normally because the server is not
sending the clients certificate authority in its “acceptabdelist” when it requests a certificate. By

62 2003-05-28 0.9.7c

S_CLIENT(1) OpenSSL S_CLIENT(1)

BUGS

using s_client the CA list can be vieed and checked. However some servers only request client
authentication after a specifiRL is requested. To obtain the list in this case it is necessary to use the
—prexit command and send &TTP request for an appropriate page.

If a certificate is specified on the command line using-ttet option it will not be used unless the
server specifically requests a client certificate. Therefor merely including a client certificate on the
command line is no guarantee that the certificate works.

If there are problems verifying a server certificate then-g@wcertsoption can be used to show the
whole chain.

Because this program has a lot of options and also because some of the techniques used are rather old,
the C source of s_client is rather hard to read and not a model of how things should be done. A typical
SSL client program would be much simpler.

The-verify option should really exit if the server verification fails.

The —prexit option is a bit of a hack. We should really report information whenever a session is rene-
gotiated.

SEE ALSO

0.9.7c

sess_idl),s_serve(l), ciphers(1)

2003-05-28 63

S_SERVER(1) OpenSSL S_SERVER(1)

NAME

s_server — SSL/TLS server program

SYNOPSIS

openssl s_servef—accept porf] [—context id] [—verify depth] [-Verify depth] [-cert filenamg
[-key keyfile] [-dcert filenamd [-dkey keyfilg] [-dhparam filenamg [—-nbio] [—nbio_tes{ [—crlf]
[-debug] [-msg] [-state] [-CApath directory] [-CAfile filename] [—nocert] [—cipher cipherlist]
[-quiet] [-no_tmp_rsa] [-ssl2] [-ssI3 [-tIs1] [-no_ssI2 [-no_ssI3 [-no_tIs]] [-no_dhqg [-bugs]
[hack] [-www] [-WWW] [-HTTP] [-engine id [-id_prefix arg] [-rand file(s)]

DESCRIPTION

Thes_servercommand implements a gene®sL/TLSserver which listens for connections on a given
port usingSSL/TLS

OPTIONS

64

—accept port
the TCP port to listen on for connections. If not specified 4433 is used.

—context id
sets thesSLcontext id. It can be given any string value. If this option is not present a default value
will be used.

—cert certname
The certificate to use, most servers cipher suites require the use of a certificate and some require a
certificate with a certain public key type: for example IS cipher suites require a certificate
containing eDSS(DSA) key. If not specified then the filename “server.pem” will be used.

—key keyfile
The private key to use. If not specified then the certificate file will be used.

—dcert filename —dkey keyname
specify an additional certificate and private key, these behave in the same manneicas tred
—key options except there is no default if they are not specified (no additional certificate and key is
used). As noted above some cipher suites require a certificate containing a key of a certain type.
Some cipher suites need a certificate carryin@R®a key and some 8SS (DSA) key. By using
RSA and DSS certificates and keys a server can support clients which only supparbr DSS
cipher suites by using an appropriate certificate.

—-nocert
if this option is set then no certificate is used. This restricts the cipher suites available to the
anonymous ones (currently just anonymbs.

—dhparam filename
the DH parameter file to use. The ephemedpal cipher suites generate keys using a seblef
parameters. If not specified then an attempt is made to load the parameters from the server certifi-
cate file. If this fails then a static set of parameters hard coded into the s_server program will be
used.

-no_dhe
if this option is set then nbH parameters will be loaded effectively disabling the ephenmeal
cipher suites.

-no_tmp_rsa
certain export cipher suites sometimes use a tempaa#aykey, this option disables temporary
RSA key generation.

-verify depth, —Verify depth
The verify depth to use. This specifies the maximum length of the client certificate chain and
makes the server request a certificate from the client. With-tkdfy option a certificate is
requested but the client does not have to send one, withv/drdy option the client must supply
a certificate or an error occurs.

—CApath directory
The directory to use for client certificate verification. This directory must be in “hash format”, see
verify for more information. These are also used when building the server certificate chain.

2003-03-20 0.9.7c

S_SERVER(1) OpenSSL S_SERVER(1)

0.9.7c

—CAfile file
A file containing trusted certificates to use during client authentication and to use when attempting
to build the server certificate chain. The list is also used in the list of acceptable client CAs passed
to the client when a certificate is requested.

—state
prints out theSSL session states.

—debug
print extensive debugging information including a hex dump of all traffic.

-msg
show all protocol messages with hex dump.

—nbio_test
tests non blocking I/O
-nbio
turns on non blocking I/O
—crlf
this option translated a line feed from the terminal G¢Rs-LF.
—quiet
inhibit printing of session and certificate information.
-ssl2,-ssl3,~tls1, —no_ssl2-no_ssl3-no_tlsl
these options disable the use of cer&dihor TLS protocols. By default the initial handshake uses

a method which should be compatible with all servers and permit them 8sus8, SSLv2 or
TLS as appropriate.

-bugs
there are several known bug3sL andTLS implementations. Adding this option enables various
workarounds.

—hack
this option enables a further workaround for some some early Netssapede (?).

—cipher cipherlist
this allows the cipher list used by the server to be modified. When the client sends a list of sup-
ported ciphers the first client cipher also included in the server list is used. Because the client
specifies the preference order, the order of the server cipherlist irrelevant. $gehéne com-
mand for more information.

—WWw
sends a status message back to the client when it connects. This includes lots of information about
the ciphers used and various session parameters. The outpdfidlirformat so this option will
normally be used with a web browser.

-Www
emulates a simple web server. Pages will be resolved relative to the current directory, for example
if the URL https://myhost/page.html is requested the file ./page.html will be loaded.

-HTTP
emulates a simple web server. Pages will be resolved relative to the current directory, for example
if the URL https://myhost/page.html is requested the file ./page.html will be loaded. The files
loaded are assumed to contain a complete and cotTa@ét response (lines that are part of the
HTTPresponse line and headers must end @GRhF).

—engine id
specifying an engine (by it's unique string) will causes_serverto attempt to obtain a functional
reference to the specified engine, thus initialising it if needed. The engine will then be set as the
default for all available algorithms.

—id_prefix arg
generatesSL/TLSsession IDs prefixed barg. This is mostly useful for testing a®BL/TLScode

(eg. proxies) that wish to deal with multiple servers, when each of which might be generating a
unigue range of session IDs (eg. with a certain prefix).

2003-03-20 65

S_SERVER(1) OpenSSL S_SERVER(1)

—rand file(s)
a file or files containing random data used to seed the random number generataGDisanket
(seeRAND_egd3)). Multiple files can be specified separated by a OS-dependent character. The
separator is for MS-Windows,, for OpenVMS, and for all others.

CONNECTED COMMANDS
If a connection request is established wittssh client and neither thewww nor the-WWW option
has been used then normally any data received from the client is displayed and any key presses will be
sent to the client.

Certain single letter commands are also recognized which perform special operations: these are listed
below.

g end the currergSLconnection but still accept new connections.
Q end the currersSLconnection and exit.

r renegotiate the&SLsession.

R renegotiate the&SLsession and request a client certificate.

P send some plain text down the underlyif@P connection: this should cause the client to discon-
nect due to a protocol violation.

S print out some session cache status information.

NOTES
s_servercan be used to deb@®$L clients. To accept connections from a web browser the command:

openssl s_server -accept 443 -www
can be used for example.

Most web browsers (in particular Netscape 88IE) only supportRSA cipher suites, so they cannot
connect to servers which don't use a certificate carryirgSsvkey or a version of OpenSSL witkSA
disabled.

Although specifying an empty list of CAs when requesting a client certificate is strictly speaking a pro-
tocol violation, somesSL clients interpret this to mean aW is acceptable. This is useful for debug-
ging purposes.
The session parameters can printed out usingas® idorogram.
BUGS
Because this program has a lot of options and also because some of the techniques used are rather old,

the C source of s_server is rather hard to read and not a model of how things should be done. A typical
SSLserver program would be much simpler.

The output of common ciphers is wrong: it just gives the list of ciphers that OpenSSL recognizes and
the client supports.

There should be a way for tlse serverprogram to print out details of any unknown cipher suites a
client says it supports.

SEE ALSO
sess_idl),s_client(1), ciphers(1)

66 2003-03-20 0.9.7c

SESS_ID(1) OpenSSL SESS_ID(1)

NAME
sess_id — SSL/TLS session handling utility

SYNOPSIS
openssl sess_id-inform PEMODER] [-outform PEMDER] [-in filenam¢g [—out filenamd
[-text] [-noout] [-contextID]

DESCRIPTION

Thesess_idorocess the encoded version of #8 session structure and optionally prints 86t ses-

sion details (for @ample thesSLsession masterly) in human readable format. Since this is a diagnos-

tic tool that needs some knowledge of #8t protocol to use properly, most users will not need to use

it.

—inform DERCOPEM
This specifies the input format. TIER option uses ahSN1 DERencoded format containing
session details. The precise format can vary from one version to the nextENIHerm is the
default format: it consists of theeR format base64 encoded with additional header and footer
lines.

—outform DERIPEM
This specifies the output format, the options have the same meaning-agdha option.

—in filename
This specifies the input filename to read session information from or standard input by default.

—out filename
This specifies the output filename to write session information to or standard output if this option
is not specified.

—text
prints out the various public or private key components in plain text in addition to the encoded ver-
sion.

—cert
if a certificate is present in the session it will be output using this option,-teéRkeoption is also
present then it will be printed out in text form.

—noout
this option prevents output of the encoded version of the session.

—contextID
this option can set the session id so the output session information uses the sDppledD
can be any string of characters. This option wont normally be used.

OUTPUT
Typical output:
SSL-Session:
Protocol : TLSv1l
Cipher . 0016

Session-ID: 871E62626C554CE95488823752CBD5F3673A3EF3DCE9C67BD916C809914B40ED

Session-ID-ctx: 01000000

Master-Key: A7TCEFC571974BE02CAC305269DC59F76EA9FO0B180CB6642697A68251F2D2BB57ES]

Key-Arg : None
Start Time: 948459261
Timeout : 300 (sec)
Verify return code 0 (ok)

Theses are described below in more detail.

Protocol
this is the protocol in use TLSv1, SSLv3 or SSLv2.

Cipher
the cipher used this is the actual r@8L or TLS cipher code, see tt&SL or TLS specifications for
more information.

0.9.7c 2000-02-03 67

SESS_ID(1) OpenSSL SESS_ID(1)

Session-ID
the SSLsessionD in hex format.

Session-ID-ctx
the sessiofD context in hex format.

Master-Key

this is theSSLsession master key.
Key-Arg

the key argument, this is only usedSaLVv2.

Start Time
this is the session start time represented as an integer in standard Unix format.

Timeout
the timeout in seconds.

Verify return code
this is the return code when a86L client certificate is verified.

NOTES
ThePEM encoded session format uses the header and footer lines:

Since theSSL session output contains the master key it is possible to read the contents of an encrypted
session using this information. Therefore appropriate security precautions should be taken if the infor-
mation is being output by a “real” application. This is however strongly discouraged and should only
be used for debugging purposes.

BUGS
The cipher and start time should be printed out in human readable form.

SEE ALSO
ciphers(1), s_serve(1)

68 2000-02-03 0.9.7c

SMIME(1) OpenSSL SMIME(1)

NAME

smime — S/IMIME utility

SYNOPSIS

openssl smime[-encrypt] [-decrypt] [-sign] [-verify] [-pk7out] [—-des] [Fdes3 [-rc2-40]
[-rc2-64] [-rc2-128] Fin file] [-certfile file] [-signer filg [-recip file] [-inform
SMIMEOPEMIDER] [-passin arg] Finkey file] [-out file] [—outform SMIME [PEM [DER]
[-content file] [-to addr] [-from ad] [-subject § [-text] [-rand file(s)] [cert.pem]...

DESCRIPTION

The smime command handles S/IMIME mail. It can encrypt, decrypt, sign and verify SIMIME mes-
sages.

COMMAND OPTIONS

0.9.7c

There are five operation options that set the type of operation to be performed. The meaning of the
other options varies according to the operation type.

—encrypt
encrypt mail for the given recipient certificates. Input file is the message to be encrypted. The out-
put file is the encrypted mail MIME format.

—decrypt
decrypt mail using the supplied certificate and private key. Expects an encrypted mail message in
MIME format for the input file. The decrypted mail is written to the output file.

—sign
sign mail using the supplied certificate and private key. Input file is the message to be signed. The
sighed message MIME format is written to the output file.

-verify
verify signed mail. Expects a signed mail message on input and outputs the signed data. Both clear
text and opaque signing is supported.

—pk7out
takes an input message and writes cRiER encoded PKCS#7 structure.

—in filename
the input message to be encrypted or signed avitliE message to be decrypted or verified.

—inform SMIMEOPEMIDER
this specifies the input format for the PKCS#7 structure. The defasMIME which reads an
S/MIME format messagePEM and DER format change this to expeBPEM and DER format
PKCS#7 structures instead. This currently only affects the input format of the PKCS#7 structure,
if no PKCS#7 structure is being input (for example witincrypt or —sign) this option has no
effect.

—out filename
the message text that has been decrypted or verified or the BuMEIformat message that has
been signed or verified.

—outform SMIMEOPEMIDER
this specifies the output format for the PKCS#7 structure. The defaMiigE which write an
S/MIME format messagePEM and DER format change this to writtEM and DER format
PKCS#7 structures instead. This currently only affects the output format of the PKCS#7 structure,
if no PKCS#7 structure is being output (for example withrify or —decrypt) this option has no
effect.

—content filename
This specifies a file containing the detached content, this is only useful withetify command.
This is only usable if the PKCS#7 structure is using the detached signature form where the content
is not included. This option will override any content if the input format is S/IMIME and it uses the
multipart/signedMIME content type.

—text
this option adds plain text (text/plaigME headers to the supplied message if encrypting or sign-
ing. If decrypting or verifying it strips off text headers: if the decrypted or verified message is not

2002-11-09 69

SMIME(1) OpenSSL SMIME(1)

of MIME type tet/plain then an error occurs.

—CAfile file
a file containing truste@A certificates, only used withverify.

—CApath dir
a directory containing trustedA certificates, only used withverify. This directory must be a
standard certificate directory: that is a hash of each subject name XG6fghash) should be
linked to each certificate.

—des —des3 -rc2-40 -rc2-64 -rc2-128
the encryption algorithm to useES (56 bits), tripleDES (168 bits) or 40, 64 or 128 bRC2
respectively if not specified 40 BiC2is used. Only used withencrypt.

—nointern
when verifying a message normally certificates (if any) included in the message are searched for
the signing certificate. With this option only the certificates specified in-¢befile option are
used. The supplied certificates can still be used as untrusted CAs however.

—noverify
do not verify the signers certificate of a signed message.

—nochain
do not do chain verification of signers certificates: that is don't use the certificates in the signed
message as untrusted CAs.

—-nosigs
don't try to verify the signatures on the message.

—-nocerts
when signing a message the signer's certificate is normally included with this option it is
excluded. This will reduce the size of the signed message but the verifier must have a copy of the
signers certificate available locally (passed using-tiegtfile option for example).

—noattr
normally when a message is signed a set of attributes are included which include the signing time
and supported symmetric algorithms. With this option they are not included.

—binary
normally the input message is converted to “canonical” format which is effectively asiramd
LF as end of line: as required by the SIMIME specification. When this option is present no transla-
tion occurs. This is useful when handling binary data which may notNsi/ile format.

—nodetach
when signing a message use opaque signing: this form is more resistant to translation by malil
relays but it cannot be read by mail agents that do not support S/IMIME. Without this option clear-
text signing with theviIME type multipart/signed is used.

—certfile file
allows additional certificates to be specified. When signing these will be included with the mes-
sage. When verifying these will be searched for the signers certificates. The certificates should be
in PEM format.

—signer file
the signers certificate when signing a message. If a message is being verified then the signers cer-
tificates will be written to this file if the verification was successful.

—recip file
the recipients certificate when decrypting a message. This certificate must match one of the recipi-
ents of the message or an error occurs.

—inkey file
the private key to use when signing or decrypting. This must match the corresponding certificate.

If this option is not specified then the private key must be included in the certificate file specified
with the-recip or —signerfile.

70 2002-11-09 0.9.7c

SMIME(1) OpenSSL SMIME(1)

—passin ag
the private key password source. For more information about the fornzeiy alee thePASS
PHRASE ARGUMENTS section inopenss(1).

—rand file(s)
a file or files containing random data used to seed the random number generataGDisanket
(seeRAND_egd3)). Multiple files can be specified separated by a OS-dependent character. The
separator is for MS-Windows,, for OpenVMS, and for all others.

cert.pem...
one or more certificates of message recipients: used when encrypting a message.

—to, —from, —subject
the relevant mail headers. These are included outside the signed portion of a message so they may
be included manually. If signing then many S/IMIME mail clients check the signers certificate’s
email address matches that specified in the From: address.

NOTES

EXIT CODES

The MIME message must be sent without any blank lines between the headers and the output. Some
mail programs will automatically add a blank line. Piping the mail directly to sendmail is one way to
achieve the correct format.

The supplied message to be signed or encrypted must include the nebgsgartyeaders or many
S/MIME clients wont display it properly (if at all). You can use thext option to automatically add
plain text headers.

A “signed and encrypted” message is one where a signed message is then encrypted. This can be pro-
duced by encrypting an already signed message: see the examples section.

This version of the program only allows one signer per message but it will verify multiple signers on
received messages. Some S/MIME clients choke if a message contains multiple signers. It is possible to
sign messages “in parallel” by signing an already signed message.

The options-encrypt and-decrypt reflect common usage in S/IMIME clients. Strictly speaking these
process PKCS#7 enveloped data: PKCS#7 encrypted data is used for other purposes.

the operation was completely successfully.

an eror occurred parsing the command options.

one of the input files could not be read.

an eror occurred creating the PKCS#7 file or when readingtME message.
an eror occurred decrypting or verifying the message.

a b~ W N -

the message was verified correctly but an error occurred writing out the signers certificates.

EXAMPLES

0.9.7c

Create a cleartext signed message:

openssl smime -sign -in message.txt -text -out mail.msg \
-signer mycert.pem

Create and opaque signed message

openssl smime -sign -in message.txt -text -out mail.msg -nodetach \
-signer mycert.pem

Create a signed message, include some additional certificates and read the private key from another file:

openssl smime -sign -in in.txt -text -out mail.msg \
-signer mycert.pem -inkey mykey.pem -certfile mycerts.pem

Send a signed message under Unix directly to sendmail, including headers:

openssl smime -sign -in in.txt -text -signer mycert.pem \
-from steve@openssl.org -to someone@somewhere \
-subject "Signed message" 0 sendmail someone@somewhere

Verify a message and extract the signer’s certificate if successful:

2002-11-09 71

SMIME(1) OpenSSL SMIME(1)

BUGS

72

openssl smime -verify -in mail.msg -signer user.pem -out signedtext.txt
Send encrypted mail using trides:

openssl smime -encrypt -in in.txt -from steve@openssl.org \
-to someone@somewhere -subject "Encrypted message" \
-des3 user.pem -out mail.msg

Sign and encrypt mail:

openssl smime -sign -in ml.txt -signer my.pem -text \
O openssl smime -encrypt -out mail.msg \
-from steve@openssl.org -to someone@somewhere \
-subject "Signed and Encrypted message" -des3 user.pem

Note: the encryption command does not include-tieat option because the message being encrypted
already hasMIME headers.

Decrypt mail:
openssl smime -decrypt -in mail.msg -recip mycert.pem -inkey key.pem

The output from Netscape form signing is a PKCS#7 structure with the detached signature format. You
can use this program to verify the signature by line wrapping the base64 encoded structure and sur-
rounding it with:

and using the command,

openssl smime -verify -inform PEM -in signature.pem -content content.txt
alternatively you can base64 decode the signature and use

openssl smime -verify -inform DER -in signature.der -content content.txt

The MIME parser isn't very clever: it seems to handle most messages that I've thrown at it but it may
choke on others.

The code currently will only write out the signer’s certificate to a file: if the signer has a separate
encryption certificate this must be manually extracted. There should be some heuristic that determines
the correct encryption certificate.

Ideally a database should be maintained of a certificates for each email address.

The code doesn't currently take note of the permitted symmetric encryption algorithms as supplied in
the SMIMECapabilities signed attribute. this means the user has to manually include the correct
encryption algorithm. It should store the list of permitted ciphers in a database and only use those.

No revocation checking is done on the signer’s certificate.

The current code can only handle S/IMIME v2 messages, the more complex S/IMIME v3 structures may
cause parsing errors.

2002-11-09 0.9.7c

SPEED(1) OpenSSL SPEED(1)

NAME
speed - test library performance

SYNOPSIS
openssl speed-engine id [md2] [mdc2] [md5] [hmac] [sha] [rmd160] [idea-cbd [rc2—-chd]
[rc5—cbc] [bf-cbc] [des-cbg [des—ede3] fc4] [rsa51] [rsal024 [rsa2048 [rsa409q [dsa512
[dsal024] Hsa2048[idea] [rc2] [des] [rsa] [blowfish]
DESCRIPTION
This command is used to test the performance of cryptographic algorithms.
OPTIONS
—engine id
specifying an engine (by it's uniqué string) will causespeedto attempt to obtain a functional
reference to the specified engine, thus initialising it if needed. The engine will then be set as the
default for all available algorithms.
[zero or more test algorithms]
If any options are giverspeedtests those algorithms, otherwise all of the above are tested.

0.9.7c 2002-11-14 73

SPKAC(1) OpenSSL SPKAC(1)

NAME
spkac — SPKAC printing and generating utility

SYNOPSIS
openssl spkac[-in filename] [-out filenamg [-key keyfile] [-passin ard [—-challenge string
[-pubkey] [-spkac spkacname]fspksect sectioh[—noout] [-verify] [—engine id

DESCRIPTION
The spkac command processes Netscape signed public key and chali&iged] files. It can print
out their contents,erify the signature and produce its own SPKACs from a supplied private key.

COMMAND OPTIONS
—in filename

This specifies the input filename to read from or standard input if this option is not specified.

Ignored if the-key option is used.

—out filename
specifies the output filename to write to or standard output by default.

—key keyfile
create arsSPKAC file using the private key ikeyfile. The —in, —noout, —spksectand —verify
options are ignored if present.

—passin password
the input file password source. For more information about the formatgofee thePASS
PHRASE ARGUMENTS section inopenss(1).

—challenge string
specifies the challenge string if 8RKACIs being created.

—spkac spkachame
allows an alternative name form the variable containingHeAC. The default is SPKAC'. This
option affects both generated and inpBKACfiles.

—spksect section
allows an alternative name form the section containingHeAC. The default is the default sec-
tion.

—noout
don’t output the text version of tlePKAC (not used if arsPKAC s being created).

—pubkey
output the public key of aBPKAC (not used if arBPKACIs being created).
-verify
verifies the digital signature on the suppl&RKAC.
—engine id
specifying an engine (by it's unique string) will causaeq to attempt to obtain a functional ref-

erence to the specified engine, thus initialising it if needed. The engine will then be set as the

default for all available algorithms.

EXAMPLES
Print out the contents of 8PKAC:

openssl spkac -in spkac.cnf
Verify the signature of aBPKAC:

openssl spkac -in spkac.cnf -noout -verify
Create arsPKACusing the challenge string “hello”:

openssl spkac -key key.pem -challenge hello -out spkac.cnf
Example of arSsPKAC, (long lines split up for clarity):

74 2003-01-30 0.9.7c

SPKAC(1) OpenSSL SPKAC(1)

SPKAC=MIG5MGUwWXDANBgkghkiGOWOBAQEFAANLADBIAKEAlcCog2Wa3lxs47ul7F\
PVWHVIPDx5ys0105Y6zpozam135a8R0OCpoRvkkiglyXfcCjiVisoWk+6FfPaD03u\
PFoQIDAQABFgV0oZWxsbzANBgkghkiGOWOBAQQFAANBAFpQtY/FojdwkJh1bEIYuc\
2EeM2KHTWPEepWYeawvHD0OgQ3DngSC75YCWnnDdg+NQ3F+X4deMx9AaEgIZtULwV\
4=

NOTES

A createdSPKACwith suitableDN components appended can be fed intacthatility.

SPKACs are typically generated by Netscape when a form is submitted containkiytheN tag as
part of the certificate enroliment process.

The challenge string permits a primitive form of proof of possession of private key. By checking the
SPKAC signature and a random challenge string some guarantee is given that the user knows the private
key corresponding to the public key being certified. This is important in some applications. Without
this it is possible for a previol®KACto be used in a “replay attack”.

SEE ALSO

0.9.7c

ca(l)

2003-01-30 75

VERIFY(1) OpenSSL VERIFY(1)

NAME
verify — Ultility to verify certificates.

SYNOPSIS
openssl verify [-CApath directory] [—~CAfile file] [-purpose purposé [-untrusted file] [-help]
[-issuer_check§[—-verbose] |] [certificates]

DESCRIPTION
Theverify command verifies certificate chains.

COMMAND OPTIONS
—CApath directory
A directory of trusted certificates. The certificates should have names of the form: hash.0 or have
symbolic links to them of this form (“hash” is the hashed certificate subject name: selasie
option of thex509 utility). Under Unix thec_rehashscript will automatically create symbolic
links to a directory of certificates.

—CAfile file
A file of trusted certificates. The file should contain multiple certificatém format concate-
nated together.

—untrusted file
A file of untrusted certificates. The file should contain multiple certificates

—purpose purpose
the intended use for the certificate. Without this option no chain verification will be done. Cur-
rently accepted uses asslclient, sslserver nssslserver smimesign smimeencrypt. See the
VERIFY OPERATION section for more information.

-help
prints out a usage message.

-verbose
print extra information about the operations being performed.

—issuer_checks
print out diagnostics relating to searches for the issuer certificate of the current certificate. This
shows why each candidate issuer certificate was rejected. However the presence of rejection mes-
sages does not itself imply that anything is wrong: during the normal verify process several rejec-
tions may take place.

— marks the last option. All arguments following this are assumed to be certificate files. This is use-
ful if the first certificate filename begins with-a

certificates
one or more certificates to verify. If no certificate filenames are included then an attempt is made
to read a certificate from standard input. They should all B&imformat.

VERIFY OPERATION
Theverify program uses the same functions as the int&slahnd S/MIME verification, therefore this
description applies to these verify operations too.

There is one crucial difference between the verify operations performed bgrityeprogram: wher-
ever possible an attempt is made to continue after an error whereas normally the verify operation would
halt on the first error. This allows all the problems with a certificate chain to be determined.

The verify operation consists of a number of separate steps.

Firstly a certificate chain is built up starting from the supplied certificate and ending in tioa rdétis
an error if the whole chain cannot be built up. The chain is built up by looking up the issuers certificate
of the current certificate. If a certificate is found which is its own issuer it is assumed to be @¥ root

The process of 'looking up the issuers certificate’ itself involves a number of steps. In versions of
OpenSSL before 0.9.5a the first certificate whose subject name matched the issuer of the current certifi-
cate was assumed to be the issuers certificate. In OpenSSL 0.9.6 and later all certificates whose subject
name matches the issuer name of the current certificate are subject to further tests. The relevant author-
ity key identifier components of the current certificate (if present) must match the subject key identifier

76 2001-10-08 0.9.7c

VERIFY(1) OpenSSL VERIFY(1)

(if present) and issuer and serial number of the candidate,issaedition the keyUsage extension of
the candidate issuer (if present) must permit certificate signing.

The lookup first looks in the list of untrusted certificates and if no match is found the remaining
lookups are from the trusted certificates. The @®is always looked up in the trusted certificate list:
if the certificate to verify is a root certificate then an exact match must be found in the trusted list.

The second operation is to check every untrusted certificate’s extensions for consistency with the sup-
plied purpose. If the-purposeoption is not included then no checks are done. The supplied or “leaf”
certificate must have extensions compatible with the supplied purpose and all other certificates must
also be validCA certificates. The precise extensions required are described in more detaiCERthe
TIFICATE EXTENSIONS section of thex509 utility.

The third operation is to check the trust settings on theaaoThe rootCA should be trusted for the
supplied purpose. For compatibility with previous versions of SSLeay and OpenSSL a certificate with
no trust settings is considered to be valid for all purposes.

The final operation is to check the validity of the certificate chain. The validity period is checked
against the current system time and the notBefore and notAfter dates in the certificate. The certificate
signatures are also checked at this point.

If all operations complete successfully then certificate is considered valid. If any operation fails then
the certificate is not valid.

DIAGNOSTICS

0.9.7c

When a verify operation fails the output messages can be somewhat cryptic. The general form of the
error message is:

server.pem: /C=AU/ST=Queensland/O=CryptSoft Pty Ltd/CN=Test CA (1024 bhit)
error 24 at 1 depth lookup:invalid CA certificate

The first line contains the name of the certificate being verified followed by the subject name of the cer-
tificate. The second line contains the error number and the depth. The depth is number of the certificate
being verified when a problem was detected starting with zero for the certificate being verified itself
then 1 for theCA that signed the certificate and so on. Finally a text version of the error number is pre-
sented.

An exhaustive list of the error codes and messages is shown below, this also includes the name of the
error code as defined in the header file x509 vfy.h Some of the error codes are defined but never
returned: these are described as “unused”.

0 X509 _V_OK: ok
the operation was successful.

2 X509 V_ERR_UNABLE_TO_GET _ISSUER_CERT: unable to get issuer certificate
the issuer certificate could not be found: this occurs if the issuer certificate of an untrusted certifi-
cate cannot be found.

3 X509 V_ERR_UNABLE_TO_GET_CRL unable to get certificateCRL
the CRL of a certificate could not be found. Unused.

4 X509 V_ERR_UNABLE_TO DECRYPT_CERT_SIGNATURE: unable to decrypt certificate’s
signature
the certificate signature could not be decrypted. This means that the actual signature value could
not be determined rather than it not matching the expected value, this is only meanirg@A for
keys.

5 X509 V_ERR_UNABLE_TO DECRYPT_CRL_SIGNATURE: unable to decryptCRL's signa-

ture
the CRL signature could not be decrypted: this means that the actual signature value could not be
determined rather than it not matching the expected value. Unused.

6 X509 V_ERR_UNABLE TO_DECODE_ISSUER_PUBLIC _KEY: unable to decode issuer
public key
the public key in the certificate SubjectPublicKeyInfo could not be read.

2001-10-08 77

VERIFY(1) OpenSSL VERIFY(1)

7 X509 _V_ERR_CERT_SIGNATURE_FAILURE: certificate signature failure
the signature of the certificate is invalid.

8 X509 _V_ERR_CRL_SIGNATURE_FAILURE: CRL signature failure
the signature of the certificate is invalid. Unused.

9 X509 V_ERR_CERT_NOT_YET_VALID: certificate is not yet valid
the certificate is not yet valid: the notBefore date is after the current time.

10 X509 _V_ERR_CERT_HAS EXPIRED: certificate has expired
the certificate has expired: that is the notAfter date is before the current time.

11 X509 V_ERR_CRL_NOT_YET_VALID: CRL is not yet valid
theCRL is not yet valid. Unused.

12 X509 _V_ERR_CRL_HAS EXPIRED:CRL has expired
theCRL has expired. Unused.

13 X509 V_ERR_ERROR_IN_CERT_NOT_BEFORE_FIELD: format error in certificate’s not-
Before field
the certificate notBefore field contains an invalid time.

14 X509 V_ERR_ERROR_IN_CERT_NOT_AFTER_FIELD: format error in certificate's
notAfter field
the certificate notAfter field contains an invalid time.

15 X509 V_ERR ERROR_IN_CRL_LAST UPDATE_FIELD: format error in CRL’s lastUp-
date field
the CRL lastUpdate field contains an invalid time. Unused.

16 X509 V_ERR_ERROR_IN_CRL_NEXT_UPDATE_FIELD: format error in CRL’S nextUp-
date field
the CRL nextUpdate field contains an invalid time. Unused.

17 X509 _V_ERR_OUT_OF_MEM: out of memory
an error occurred trying to allocate memory. This should never happen.

18 X509 V_ERR_DEPTH_ZERO_SELF SIGNED_CERT: self signed certificate
the passed certificate is self signed and the same certificate cannot be found in the list of trusted
certificates.

19 X509 V_ERR_SELF _SIGNED_CERT_IN_CHAIN: self signed certificate in certificate chain
the certificate chain could be built up using the untrusted certificates but the root could not be
found locally.

20 X509 V_ERR _UNABLE_TO_GET ISSUER_CERT_LOCALLY: unable to get local issuer
certificate
the issuer certificate of a locally looked up certificate could not be found. This normally means the
list of trusted certificates is not complete.

21 X509 V_ERR_UNABLE_TO_VERIFY_LEAF_SIGNATURE: unable to verify the first cer-

tificate
no signatures could be verified because the chain contains only one certificate and it is not self
signed.

22 X509 _V_ERR_CERT_CHAIN_TOO_LONG: certificate chain too long
the certificate chain length is greater than the supplied maximum depth. Unused.

23 X509 V_ERR_CERT_REVOKED: certificate revoked
the certificate has been revoked. Unused.

24 X509 V_ERR_INVALID_CA: invalid CA certificate
a CA certificate is invalid. Either it is not @A or its extensions are not consistent with the sup-
plied purpose.

25 X509 V_ERR_PATH_LENGTH_EXCEEDED: path length constraint exceeded
the basicConstraints pathlength parameter has been exceeded.

78 2001-10-08 0.9.7c

VERIFY(1) OpenSSL VERIFY(1)

BUGS

26 X509_V_ERR_INVALID_PURPOSE: unsupported certificate purpose
the supplied certificate cannot be used for the specified purpose.

27 X509_V_ERR_CERT_UNTRUSTED: certificate not trusted
the rootCA is not marked as trusted for the specified purpose.

28 X509 V_ERR_CERT_REJECTED: certificate rejected
the rootCA is marked to reject the specified purpose.

29 X509 V_ERR_SUBJECT_ISSUER_MISMATCH: subject issuer mismatch
the current candidate issuer certificate was rejected because its subject name did not match the
issuer name of the current certificate. Only displayed whenislsaer_checkption is set.

30 X509 _V_ERR_AKID_SKID_MISMATCH: authority and subject key identifier mismatch
the current candidate issuer certificate was rejected because its subject key identifier was present
and did not match the authority key identifier current certificate. Only displayed when the
—issuer_checksption is set.

31 X509 V_ERR_AKID_ISSUER_SERIAL _MISMATCH: authority and issuer serial number

mismatch
the current candidate issuer certificate was rejected because its issuer name and serial number was
present and did not match the authority key identifier of the current certificate. Only displayed
when the-issuer_checksption is set.

32 X509 V_ERR_KEYUSAGE_NO_CERTSIGN:key usage does not include certificate signing
the current candidate issuer certificate was rejected because its keyUsage extension does not per-
mit certificate signing.

50 X509 _V_ERR_APPLICATION_VERIFICATION: application verification failure
an application specific error. Unused.

Although the issuer checks are a considerably improvement over the old technique they still suffer from
limitations in the underlying X509 LOOKURPI. One consequence of this is that trusted certificates
with matching subject name must either appear in a file (as specified -b@Alfiee option) or a direc-

tory (as specified byCApath. If they occur in both then only the certificates in the file will be recog-
nised.

Previous versions of OpenSSL assume certificates with matching subject name are identical and mis-
handled them.

SEE ALSO

0.9.7¢c

x509(1)

2001-10-08 79

VERSION(1) OpenSSL VERSION(1)

NAME
version — print OpenSSL version information
SYNOPSIS
openssl versiorf-a] [-v] [-b] [-0] [-f] [-p]
DESCRIPTION
This command is used to print out version information about OpenSSL.
OPTIONS

—a all information, this is the same as setting all the other flags.

—-v the current OpenSSL version.

—-b the date the current version of OpenSSL was built.

—0 option information: various options set when the library was built.
—c compilation flags.

—-p platform setting.

—d OPENSSLDIRsetting.

NOTES
The output obpenssl version —avould typically be used when sending in a bug report.

HISTORY
The—d option was added in OpenSSL 0.9.7.

80 2002-01-04 0.9.7c

X509(1) OpenSSL X509(1)

NAME
x509 - Certificate display and signing utility

SYNOPSIS
openssl x509-inform DEROPEMMIET] [—outform DERPEM MET | [-keyform DERIPEM]
[-CAform DEROPEM] [-CAkeyform DERPEM] [—in filename [-out filename] [-serial]
[-hash] [-subjecf [—issuel]l [-nameopt optior] [-email] [—startdate] [—enddate] [-purpos€
[-dates] [-modulus] [-fingerprint] [-aliag [—-noouf] [-trustout] [—clrtrust] [—clrreject]
[-addtrust arg] [-addreject arg] [-setalias arg [—days ard [—-set_serial 1} [-signkey filenamé
[-x509toreq] [-req] [-CA filename] [-CAkey filenamd [-CAcreateserial [-CAserial filenamg
[-text] [-C] [-md2Fmd5G-shaldmdc2] [—clrext] [—extfile filenamg [-extensions sectioh
[-engine id]

DESCRIPTION
The x509 command is a multi purpose certificate utility. It can be used to display certificate informa-
tion, convert certificates to various forms, sign certificate requests like a @Gaihor edit certificate
trust settings.

Since there are a large number of options they will split up into various sections.

OPTIONS
INPUT, OUTPUT AND GENERAL PURPOSE OPTIONS

—inform DEROPEMMIET
This specifies the input format normally the command will expect an X509 certificate but this can
change if other options such aq are present. ThBER format is theDER encoding of the cer-
tificate andPEM is the base64 encoding of tb&R encoding with header and footer lines added.
TheNET option is an obscure Netscape server format that is now obsolete.

—outform DERIPEMONET
This specifies the output format, the options have the same meaning-agdha option.

—in filename
This specifies the input filename to read a certificate from or standard input if this option is not
specified.

—out filename
This specifies the output flename to write to or standard output by default.

-md2[F+md5Fshal@Fmdc2
the digest to use. This affects any signing or display option that uses a message digest, such as the
—fingerprint, —signkeyand—-CA options. If not specified thaviD5 is used. If the key being used
to sign with is e@DSA key then this option has no effe6tiAlis always used witbSA keys.

—engine id
specifying an engine (by it's unique string) will causaeq to attempt to obtain a functional ref-
erence to the specified engine, thus initialising it if needed. The engine will then be set as the
default for all available algorithms.

DISPLAY OPTIONS

Note: the—alias and—purpose options are also display options but are described iTRUST SET-
TINGS section.

—text
prints out the certificate in text form. Full details are output including the public key, signature
algorithms, issuer and subject names, serial number any extensions present and any trust settings.

—certopt option
customise the output format used wittext. Theoption argument can be a single option or multi-

ple options separated by commas. Fhertopt switch may be also be used more than once to set
multiple options. See tHEEXT OPTIONS section for more information.

0.9.7c 2003-01-30 81

X509(1)

82

OpenSSL X509(1)

—noout
this option prevents output of the encoded version of the request.

—modulus
this option prints out the value of the modulus of the public key contained in the certificate.

-serial
outputs the certificate serial number.

—hash
outputs the “hash” of the certificate subject name. This is used in OpenSSL to form an index to
allow certificates in a directory to be looked up by subject name.

—-subject
outputs the subject name.

—issuer
outputs the issuer name.

—nameopt option
option which determines how the subject or issuer names are displayesptiimargument can
be a single option or multiple options separated by commas. Alternativehhémeeopt switch
may be used more than once to set multiple options. Se¢AME OPTIONS section for more
information.

—email
outputs the email address(es) if any.

—startdate
prints out the start date of the certificate, that is the notBefore date.

—enddate
prints out the expiry date of the certificate, that is the notAfter date.

—dates
prints out the start and expiry dates of a certificate.

—fingerprint
prints out the digest of tHeER encoded version of the whole certificate (see digest options).

—C this outputs the certificate in the form of a C source file.

TRUST SETTINGS
Please note these options are currently experimental and may well change.

A trusted certificate is an ordinary certificate which has several additional pieces of information
attached to it such as the permitted and prohibited uses of the certificate and an “alias”.

Normally when a certificate is being verified at least one certificate must be “trusted”. By default a
trusted certificate must be stored locally and must be a&Craadny certificate chain ending in thia
is then usable for any purpose.

Trust settings currently are only used with a roat They allow a finer control over the purposes the
root CA can be used for. For exampl€a may be trusted foBSL client but notSSL server use.

See the description of tiverify utility for more information on the meaning of trust settings.
Future versions of OpenSSL will recognize trust settings on any certificate: not just root CAs.

—trustout
this causes509to output arusted certificate. An ordinary or trusted certificate can be input but
by default an ordinary certificate is output and any trust settings are discarded. Wittusi@ut
option a trusted certificate is output. A trusted certificate is automatically output if any trust set-
tings are modified.

—setalias arg
sets the alias of the certificate. This will allow the certificate to be referred to using a nickname for
example “Steve’s Certificate”.

2003-01-30 0.9.7c

X509(1) OpenSSL X509(1)

-alias
outputs the certificate alias, if any.

—clrtrust
clears all the permitted or trusted uses of the certificate.

—clrreject
clears all the prohibited or rejected uses of the certificate.

—addtrust arg
adds a trusted certificate use. Any object name can be used here but currentheontiyth
(SSL client use),serverAuth (SSL sener use) andemailProtection (S/MIME email) are used.
Other OpenSSL applications may define additional uses.

—addreject arg
adds a prohibited use. It accepts the same values aadteust option.

—purpose
this option performs tests on the certificate extensions and outputs the results. For a more complete
description see theERTIFICATE EXTENSIONS section.

SIGNING OPTIONS
Thex509utility can be used to sign certificates and requests: it can thus behave like &Atini

—signkey filename
this option causes the input file to be self signed using the supplied private key.

If the input file is a certificate it sets the issuer name to the subject name (i.e. makes it self signed)
changes the public key to the supplied value and changes the start and end dates. The start date is
set to the current time and the end date is set to a value determined-daykeption. Any cer-

tificate extensions are retained unless-ttieext option is supplied.

If the input is a certificate request then a self signed certificate is created using the supplied private
key using the subject name in the request.

—clrext
delete any extensions from a certificate. This option is used when a certificate is being created
from another certificate (for example with theignkeyor the—CA options). Normally all exten-
sions are retained.

—keyform PEMIDER
specifies the formabER or PEM) of the private key file used in thesignkeyoption.

—days arg
specifies the number of days to make a certificate valid for. The default is 30 days.

—x509toreq
converts a certificate into a certificate request. Tignkey option is used to pass the required
private key.

-req
by default a certificate is expected on input. With this option a certificate request is expected
instead.

—set_serial n
specifies the serial number to use. This option can be used with eithesiginéey or —CA
options. If used in conjunction with theCA option the serial number file (as specified by the
—CAserial or —CAcreateserialoptions) is not used.

The serial number can be decimal or hex (if precede@ixhyNegative serial numbers can also be
specified but their use is not recommended.

—CA filename
specifies thec A certificate to be used for signing. When this option is preggifibehaves like a
“mini CA”. The input file is signed by thiSA using this option: that is its issuer name is set to the
subject name of theA and it is digitally signed using the CAs private key.

This option is normally combined with thaeq option. Without the-req option the input is a

0.9.7c 2003-01-30 83

X509(1) OpenSSL X509(1)

certificate which must be self signed.

—CAkey filename
sets theCA private key to sign a certificate with. If this option is not specified then it is assumed
that theCA private key is present in th@A certificate file.

—CAserial filename
sets theCA serial number file to use.

When the-CA option is used to sign a certificate it uses a serial number specified in a file. This
file consist of one line containing an even number of hex digits with the serial humber to use.
After each use the serial number is incremented and written out to the file again.

The default filename consists of tha certificate file base name with “.srl” appended. For exam-
ple if theCA certificate file is called “mycacert.pem” it expects to find a serial number file called
“mycacert.srl”.

—CAcreateserial
with this option theCA serial number file is created if it does not exist: it will contain the serial
number “02” and the certificate being signed will have the 1 as its serial number. Normally if the
—CA option is specified and the serial number file does not exist it is an error.

—extfile filename
file containing certificate extensions to use. If not specified then no extensions are added to the
certificate.

—extensions section
the section to add certificate extensions from. If this option is not specified then the extensions
should either be contained in the unnamed (default) section or the default section should contain a
variable called “extensions” which contains the section to use.

NAME OPTIONS

The nameoptcommand line switch determines how the subject and issuer names are displayed. If no
nameoptswitch is present the default “oneline” format is used which is compatible with previous ver-
sions of OpenSSL. Each option is described in detail below, all options can be precedetbliyra

the option off. Only the first four will normally be used.

compat
use the old format. This is equivalent to specifying no name options at all.

RFC2253
displays names compatible witRFC2253 equivalent toesc 2253 esc_ctrl, esc_msb utf8,
dump_nostr,dump_unknown, dump_der, sep_comma_plusdn_rev andsname

oneline
a oneline format which is more readable thRRC2253 It is equivalent to specifying the
esc_2253esc_ctrl,esc_msbutf8, dump_nostr, dump_der, use_quote sep_comma_plus_spc
spc_egandsnameoptions.

multiline
a multiline format. It is equivalergsc_ctrl,esc_mshsep_multiline, spc_eqIname andalign.

esc_2253
escape the “special” characters requiredA’C2253in a field That is+"<>;. Additionally # is
escaped at the beginning of a string and a space character at the beginning or end of a string.

esc_ctrl
escape control characters. That is those Wbl values less than 0x20 (space) and the delete
(Ox7f) character. They are escaped usingrRR€2253\XX notation (wherexX are two hex digits
representing the character value).

esc_msb
escape characters with thisB set, that is wittASCII values larger than 127.

use_quote
escapes some characters by surrounding the whole string whithracters, without the option all
escaping is done with theharacter.

84 2003-01-30 0.9.7c

X509(1) OpenSSL X509(1)

utfg8
convert all strings t&TF8 format first. This is required bRFC2253 If you are lucky enough to
have aUTF8 compatible terminal then the use of this option (aotsettingesc_msb) may result
in the correct display of multibyte (international) characters. Is this option is not present then
multibyte characters larger than 0xff will be represented using the format \UXXXX for 16 bits and
WXXXXXXXX for 32 bits. Also if this option is off any UTF8Strings will be converted to their
character form first.

no_type
this option does not attempt to interpret multibyte characters in any way. That is their content
octets are merely dumped as though one octet represents each character. This is useful for diag-
nostic purposes but will result in rather odd looking output.

show_type
show the type of th@&SN1 character string. The type precedes the field contents. For example
“ BMPSTRING:Hello World”.

dump_der
when this option is set any fields that need to be hexdumped will be dumped usiER trecod-
ing of the field. Otherwise just the content octets will be displayed. Both options useCdhzs3
#XXXX... format.

dump_nostr
dump non character string types (for exam@ETET STRINGQ if this option is not set then non
character string types will be displayed as though each content octet represents a single character.

dump_all
dump all fields. This option when used withmp_der allows theDER encoding of the structure
to be unambiguously determined.

dump_unknown
dump any field whoseID is not recognised by OpenSSL.

sep_comma_plussep_comma_plus_spa¢ceep_semi_plus_spa¢sep_multiline
these options determine the field separators. The first character is between RDNs and the second
between multiple AVAs (multiple AVAs are very rare and their use is discouraged). The options
ending in “space” additionally place a space after the separator to make it more readable. The
sep_multiline uses a linefeed character for REN separator and a spacedor the AVA separa-
tor. It also indents the fields by four characters.

dn_rev
reverse the fields of theN. This is required byRFC2253 As a side effect this also reverses the
order of multiple AVAs but this is permissible.

nofname,sname,lname, oid
these options alter how the field name is displayedname does not display the field at all.
snameuses the “short name” formCN for commonName for examplelname uses the long
form. oid represents theID in numerical form and is useful for diagnostic purpose.

align
align field values for a more readable output. Only usablesgjh multiline.

spc_eq
places spaces round theharacter which follows the field name.

TEXT OPTIONS

As well as customising the name output format, it is also possible to customise the actual fields printed
using thecertopt options when théext option is present. The default behaviour is to print all fields.

compatible
use the old format. This is equivalent to specifying no output options at all.

no_header
don't print header information: that is the lines saying “Certificate” and “Data”.

0.9.7c 2003-01-30 85

X509(1) OpenSSL X509(1)

no_\ersion
don't print out the version number.

no_serial
don't print out the serial number.

no_signame
don't print out the signature algorithm used.

no_validity
don't print the validity, that is thaotBefore andnotAfter fields.

no_subject
don't print out the subject name.

no_issuer
don't print out the issuer name.

no_pubkey
don't print out the public key.

no_sigdump
don't give a hexadecimal dump of the certificate signature.

no_aux
don't print out certificate trust information.

no_extensions
don't print out any X509V3 extensions.

ext_default
retain default extension behaviour: attempt to print out unsupported certificate extensions.

ext_error
print an error message for unsupported certificate extensions.

ext_parse
ASN1 parse unsupported extensions.

ext_dump
hex dump unsupported extensions.

ca_default
the value used by thea utility, equivalent tono_issuer no_pubkey, no_header no_version
no_sigdumpandno_signame

EXAMPLES
Note: in these examples the '\’ means the example should be all on one line.

Display the contents of a certificate:
openssl x509 -in cert.pem -noout -text
Display the certificate serial number:
openssl x509 -in cert.pem -noout -serial
Display the certificate subject name:
openssl x509 -in cert.pem -noout -subject
Display the certificate subject nameRRC2253form:
openssl x509 -in cert.pem -noout -subject -nameopt RFC2253
Display the certificate subject name in oneline form on a terminal suppomHFgy
openssl x509 -in cert.pem -noout -subject -nameopt oneline,-escmsb
Display the certificatD5 fingerprint:
openssl x509 -in cert.pem -noout -fingerprint
Display the certificatSHA1 fingerprint:

86 2003-01-30 0.9.7c

X509(1) OpenSSL X509(1)

openssl x509 -shal -in cert.pem -noout -fingerprint
Corvert a certificate fronfPEM to DER format:

openssl x509 -in cert.pem -inform PEM -out cert.der -outform DER
Corvert a certificate to a certificate request:

openssl x509 -x509toreq -in cert.pem -out req.pem -signkey key.pem
Convert a certificate request into a self signed certificate using extensioriafor a

openssl x509 -req -in careq.pem -extfile openssl.cnf -extensions v3_ca \
-signkey key.pem -out cacert.pem

Sign a certificate request using tbe certificate above and add user certificate extensions:

openssl x509 -req -in req.pem -extfile openssl.cnf -extensions v3_usr \
-CA cacert.pem -CAkey key.pem -CAcreateserial

Set a certificate to be trusted 8L client use and change set its alias to “Steve’s Clazs"1

openssl x509 -in cert.pem -addtrust clientAuth \
-setalias "Steve’s Class 1 CA" -out trust.pem

NOTES

ThePEM format uses the header and footer lines:

The conversion tTF8 format used with the name options assumes that T61Strings uS©#859-1
character set. This is wrong but Netscape M8tE do this as do many certificates. So although this is
incorrect it is more likely to display the majority of certificates correctly.

The —fingerprint option takes the digest of tlEER encoded certificate. This is commonly called a
“fingerprint”. Because of the nature of message digests the fingerprint of a certificate is unique to that
certificate and two certificates with the same fingerprint can be considered to be the same.

The Netscape fingerprint us@®5 whereasvSIE usesSHAL

The —email option searches the subject name and the subject alternative name extension. Only unique
email addresses will be printed out: it will not print the same address more than once.

CERTIFICATE EXTENSIONS

0.9.7c

The —purpose option checks the certificate extensions and determines what the certificate can be used
for. The actual checks done are rather complex and include various hacks and workarounds to handle
broken certificates and software.

The same code is used when verifying untrusted certificates in chains so this section is useful if a chain
is rejected by the verify code.

The basicConstraints extension flag is used to determine whether the certificate can be used as a
CA. If the CA flag is true then it is @A, if the CA flag is false then it is not@A. All CAs should have
theCA flag set to true.

If the basicConstraints extension is absent then the certificate is considered to be a “passitier
extensions are checked according to the intended use of the certificate. A warning is given in this case
because the certificate should really not be regardedcastmowever it is allowed to be @A to work

around some broken software.

If the certificate is a V1 certificate (and thus has no extensions) and it is self signed it is also assumed to
be aCA but a warning is again given: this is to work around the problem of Verisign roots which are V1
self signed certificates.

2003-01-30 87

X509(1) OpenSSL X509(1)

If the keyUsage extension is present then additional restraints are made on the uses of the certificate. A
CA certificatemust have the keyCertSign bit set if the keyUsage extension is present.

The extended key usage extension places additional restrictions on the certificate uses. If this extension
is present (whether critical or not) the key can only be used for the purposes specified.

A complete description of each test is given below. The comments about basicConstraints and
keyUsage and V1 certificates above applgitcA certificates.

SSL Client
The extended key usage extension must be absent or include the “web client authentimation”
keyUsage must be absent or it must have the digitalSignature bit set. Netscape certificate type
must be absent or it must have 88t client bit set.

SSL Client CA
The extended key usage extension must be absent or include the “web client authentiation”
Netscape certificate type must be absent or it must hagstheAbit set: this is used as a work
around if the basicConstraints extension is absent.

SSL Server
The extended key usage extension must be absent or include the “web server authentication”
and/or one of th&GC OIDs. keyUsage must be absent or it must have the digitalSignature, the
keyEncipherment set or both bits set. Netscape certificate type must be absent or Bste the
server bit set.

SSL Server CA
The extended key usage extension must be absent or include the “web server authentication”
and/or one of th6éGCOIDs. Netscape certificate type must be absent 0g#heCA bit must be
set: this is used as a work around if the basicConstraints extension is absent.

NetscapeSSL Server
For NetscapessSL clients to connect to aBSL server it must have the keyEncipherment bit set if
the keyUsage extension is present. This isn’t always valid because some cipher suites use the key
for digital signing. Otherwise it is the same as a nosstlserver.

Common S/MIME Client Tests
The extended key usage extension must be absent or include the “email protewiion”
Netscape certificate type must be absent or should have the SIMIME bit set. If the S/IMIME bit is
not set in netscape certificate type thengBeclient bit is tolerated as an alternative but a warn-
ing is shown: this is because some Verisign certificates don'’t set the S/IMIME bit.

S/MIME Signing
In addition to the common S/MIME client tests the digitalSignature bit must be set if the
keyUsage extension is present.

S/MIME Encryption
In addition to the common S/MIME tests the keyEncipherment bit must be set if the keyUsage
extension is present.

SIMIME CA
The extended key usage extension must be absent or include the “email protewition”
Netscape certificate type must be absent or must have the S/EWMii set: this is used as a
work around if the basicConstraints extension is absent.

CRL Signing
The keyUsage extension must be absent or it must ha@Rthsigning bit set.
CRL SigningCA
The normalCA tests apply. Except in this case the basicConstraints extension must be present.

BUGS
Extensions in certificates are not transferred to certificate requests and vice versa.

It is possible to produce invalid certificates or requests by specifying the wrong private key or using
inconsistent options in some cases: these should be checked.

There should be options to explicitly set such things as start and end dates rather than an offset from the
current time.

88 2003-01-30 0.9.7c

X509(1) OpenSSL X509(1)

The code to implement theerfy behaviour described in tHERUST SETTINGS is currently being
developed. It thus describes the intended behaviour rather than the current behaviour. It is hoped that it
will represent reality in OpenSSL 0.9.5 and later.

SEE ALSO
req(1),ca(l), genrsa1l), gendsd1l), verify (1)

0.9.7c 2003-01-30 89

ASN1 OBJECT new(3) OpenSSL ASN1 _OBJECT new(3)

NAME
ASN1 OBJECT new, ASN1 OBJECT free, — object allocation functions

SYNOPSIS
ASN1 OBJECT *ASN1_OBJECT_ new(void);
void ASN1_OBJECT_free(ASN1_OBJECT *a);

DESCRIPTION
The ASN1_OBJECTallocation routines, allocate and free A8N1_OBJECTstructure, which represents
anASN1 OBJECT IDENTIFIER

ASN1 OBJECT_ newdlocates and initializesASN1_OBJECTstructure.
ASN1 OBJECT freefjees up théA\SN1_OBJECT structurea.

NOTES
Although ASN1_OBJECT_new§@llocates a nevASN1_OBJECTstructure it is almost never used in
applications. Th&SN1 object utility functions such a8BJ_nid2obj()are used instead.

RETURN VALUES
If the allocation failsASN1_OBJECT_ newf(gturnsNULL and sets an error code that can be obtained
by ERR_get_erro3). Otherwise it returns a pointer to the newly allocated structure.

ASN1 OBJECT freefgturns no value.

SEE ALSO
ERR_get_erro(3), d2i_ASN1 OBJEC(B)

HISTORY
ASN1 OBJECT new(and ASN1 _OBJECT free(pre available in all versions of SSLeay and
OpenSSL.

90 2002-10-09 0.9.7c

ASN1 STRING_length(3) OpenSSL ASN1_STRING_length(3)

NAME
ASN1 _STRING dup, ASN1_STRING_cmp, ASN1_STRING_set, ASN1_STRING_length,
ASN1 STRING length_set, ASN1 STRING type, ASN1_STRING data — ASN1 STRING utility
functions

SYNOPSIS
int ASN1_STRING_length(ASN1_STRING *x);
unsigned char * ASN1_STRING_data(ASN1_STRING *x);

ASN1_STRING * ASN1_STRING_dup(ASN1_STRING *a);

int ASN1_STRING_cmp(ASN1_STRING *a, ASN1_STRING *b);

int ASN1_STRING_set(ASN1_STRING *str, const void *data, int len);
int ASN1_STRING_type(ASN1_STRING *x);

int ASN1_STRING_to_UTF8(unsigned char **out, ASN1_STRING *in);

DESCRIPTION
These functions allow asSN1_STRING structure to be manipulated.

ASN1 STRING_length@turns the length of the contentof

ASN1 STRING_datafpturns an internal pointer to the dataxofSince this is an internal pointer it
shouldnot be freed or modified in any way.

ASN1 STRING_dupf@turns a copy of the structuae

ASN1 STRING_cmp¢pmpares andb returning O if the two are identical. The string types and con-
tent are compared.

ASN1 STRING_setfets the data of stringtr to the bufferdata or lengthlen. The supplied data is
copied. Iflenis -1 then the length is determined by strlen(data).

ASN1 STRING type() returns the type of x, using standard constants such as
V_ASN1_OCTET_STRING.

ASN1 STRING_to UTF8¢pnverts the stringn to UTF8 format, the converted data is allocated in a
buffer in*out. The length ofout is returned or a negative error code. The buffert should be free
usingOPENSSL _free()

NOTES
Almost allASN1types in OpenSSL are represented asa@l_STRING structure. Other types such as
ASN1_OCTET_STRING are simply typedefed toASN1 STRING and the functions call the
ASN1_STRING equivalents. ASN1_STRING is also used for som€HOICE types which consist
entirely of primitive string types such BérectoryString andTime.

These functions shouldot be used to examine or modiASN1_INTEGER or ASN1_ENUMERATED
types: the relevanNTEGER or ENUMERATED ultility functions should be used instead.

In general it cannot be assumed that the data returné®hy_ STRING_data{$ null terminated or

does not contain embedded nulls. The actual format of the data will depend on the actual string type
itself: for example for and IA5String the data will B8CII, for a BMPString two bytes per character in

big endian format, UTF8String will be WwiTF8 format.

Similar care should be take to ensure the data is in the correct format when calling
ASN1_STRING_set()

RETURN VALUES
SEE ALSO
ERR_get_erro(3)

HISTORY

0.9.7c 2002-10-20 91

ASN1 STRING_new(3) OpenSSL ASN1 STRING_new(3)

NAME
ASN1 STRING_new, ASN1 STRING_type _new, ASN1 STRING_free — ASN1 _STRING allocation
functions

SYNOPSIS
ASN1 STRING * ASN1_STRING_new(void);
ASN1 STRING * ASN1_STRING_type_ new(int type);
void ASN1_STRING_free(ASN1_STRING *a);

DESCRIPTION
ASN1 STRING_newf@turns an allocate@iSN1_STRING structure. Its type is undefined.

ASN1 STRING_type_ new€turns an allocate@iSN1_STRING structure of typdype.
ASN1 STRING freeffees upa.

NOTES
Other string types call th&SN1_STRING functions. For examplASN1 OCTET_STRING_neweglls
ASN1_STRING_type(V_ASN1_OCTET_STRING).

RETURN VALUES

ASN1 STRING_new@ndASN1 STRING_type newéturn a validASN1_STRINGstructure oNULL
if an error occurred.

ASN1 STRING_freefloes not return a value.

SEE ALSO
ERR_get_erro(3)

HISTORY
TBA

92 2002-10-20 0.9.7c

ASN1 STRING_print_ex(3) OpenSSL ASN1_STRING_print_ex(3)

NAME
ASN1 STRING_ print_ex, ASN1_STRING_print_ex_fp — ASN1_STRING output routines.

SYNOPSIS
#include <openssl/asnl.h>

int ASN1_STRING_print_ex(BIO *out, ASN1_STRING *str, unsigned long flags);
int ASN1_STRING_print_ex_fp(FILE *fp, ASN1_STRING *str, unsigned long flags);
int ASN1_STRING_print(BIO *out, ASN1_STRING *str);

DESCRIPTION
These functions output akSN1_STRING structure ASN1_STRING is used to represent all te&SN1
string types.

ASN1 STRING_print_ex(®utputs str to out, the format is determined by the optiofiags
ASN1 STRING_print_ex_fpé)identical except it outputs fp instead.

ASN1 STRING_printrints str to out but using a different format tdSN1_STRING_print_ex()t
replaces unprintable characters (other ®OBNLF) with *.".

NOTES
ASN1 STRING_print{} a legacy function which should be avoided in new applications.

Although there are a large number of options frequexslyl_STRFLAGS_RFC2253s suitable, or on
UTF8terminalsASN1_STRFLAGS_ RFC2253% “"ASN1_STRFLAGS ESC_MSB

The complete set of supported optionsffagsis listed below.

Various characters can be escapeddN1_STRFLGS_ESC 2253s set the characters determined by
RFC2253 are escaped. IASN1_STRFLGS_ESC_CTRL is set control characters are escaped. If
ASN1_STRFLGS_ESC_MSBis set characters with théSB set are escaped: this option shondd be
used if the terminal correctly interprei3F8 sequences.

Escaping takes several forms.

If the character being escaped is a 16 bit character then the form “\WXXXX" is used using exactly
four characters for the hex representation. If it is 32 bits then “WUXXXXXXXX" is used using eight
characters of its hex representation. These forms will only be us&tF# conversion is not set (see
below).

Printable characters are normally escaped using the backslash '\' charac#®gN1f STR-

FLGS_ESC_QUOTEIs set then the whole string is instead surrounded by double quote characters: this
is arguably more readable than the backslash notation. Other characters use the “\XX” using exactly

two characters of the hex representation.

If ASN1_STRFLGS_UTF8_CONVERTIs set then characters are convertetdT&8 format first. If the
terminal supports the display 0ffF8 sequences then this option will correctly display multi byte char-
acters.

If ASN1_STRFLGS_IGNORE_TYPE is set then the string type is not interpreted at all: everything is

assumed to be one byte per character. This is primarily for debugging purposes and can result in con-

fusing output in multi character strings.

If ASN1_STRFLGS_SHOW_TYPEis set then the string type itself is printed out before its value (for
example ‘BMPSTRING'), this actually useASN1_tag2str()

The content of a string instead of being interpreted can be “dumped”: this just outputs the value of the

string using the form #XXXX using hex format for each octet.
If ASN1_STRFLGS_DUMP_ALL is set then any type is dumped.

Normally non character string types (SUChOSSTET STRING are assumed to be one byte per charac-
ter, if ASN1_STRFLAGS_DUMP_UNKNOWN is set then they will be dumped instead.

When a type is dumped normally just the content octets are printegNif STRFLGS_DUMP_DERIs
set then the complete encoding is dumped instead (including tag and length octets).

ASN1_STRFLGS_RFC2253ncludes all the flags required BfC2253 It is equivalent to:
ASN1_STRFLGS_ESC_2253ASN1_STRFLGS_ESC_CTROASN1_STRFLGS_ESC_MSH

0.9.7c 2002-11-11 93

ASN1 STRING_print_ex(3) OpenSSL ASN1_STRING_print_ex(3)

ASN1_STRFLGS_UTF8_CONVERT O ASN1_STRFLGS_DUMP_UNKNOWN ASN1_STR-
FLGS_DUMP_DER

SEE ALSO
X509 NAME_print_efB), ASN1_tag2stf3)

HISTORY
TBA

94 2002-11-11 0.9.7c

bio(3)

NAME

OpenSSL bio(3)

bio — I/O abstraction

SYNOPSIS

#include <openssl/bio.h>
TBA

DESCRIPTION

A BIO is an I/O abstraction, it hides many of the underlying I/O details from an application. If an appli-
cation uses 810 for its I/O it can transparently handéSL connections, unencrypted network connec-
tions and file I/O.

There are two type @10, a source/sinBIO and a filteBIO.

As its name implies a source/siBKO is a source and/or sink of data, examples include a sBuket
and a fileBIO.

A filter BIO takes data from onglO and passes it through to another, or the application. The data may
be left unmodified (for example a message dig#3) or translated (for example an encryptiBio).

The effect of a filteBIO may change according to the 1/O operation it is performing: for example an
encryptionBIO will encrypt data if it is being written to and decrypt data if it is being read from.

BIOs can be joined together to form a chain (a siBgleis a chain with one component). A chain nor-
mally consist of one source/siBkO and one or more filter BIOs. Data read from or written to the first
BIO then traverses the chain to the end (normally a sourc&gink

SEE ALSO

0.9.7c

BIO _ctrl(3), BIO_f base643), BIO_f buffer(3), BIO _f cipher3), BIO_f md3), BIO_f null(3),
BIO_f ss(3), BIO_find_typd3), BIO _new(3), BIO_new_bio_paif3), BIO_push3), BIO_read(3),
BIO_s accepf3), BIO_s big3), BIO_s connedB), BIO_s fd3), BIO_s filg3), BIO_s_meni3),
BIO_s null(3), BIO_s_sockd®), BIO_set callback3), BIO_should_retry3)

2001-04-12 95

BIO_ctrl(3) OpenSSL BIO_ctrl(3)

NAME

BIO_ctrl, BIO_callback_ctrl, BIO_ptr_ctrl, BIO_int_ctrl, BIO_reset, BIO_seek, BIO tell, BIO_flush,
BIO _eof, BIO_set close, BIO_get close, BIO_pending, BIO_ wpending, BIO_ctrl_pending,
BIO_ctrl_wpending, BIO_get_info_callback, BIO_set_info_callback — BIO control operations

SYNOPSIS

#include <openssl/bio.h>

long BIO_ctrl(BIO *bp,int cmd,long larg,void *parg);

long BIO_callback_ctrl(BIO *b, int cmd, void (*fp)(struct bio_st *, int, const char *, int, long, long));
char * BIO_ptr_ctrl(BIO *bp,int cmd,long larg);

long BIO_int_ctrl(BIO *bp,int cmd,long larg,int iarg);

int BIO_reset(BIO *b);

int BIO_seek(BIO *b, int ofs);

int BIO_tell(BIO *b);

int BIO_flush(BIO *b);

int BIO_eof(BIO *b);

int BIO_set_close(BIO *b,long flag);
int BIO_get close(BIO *b);

int BIO_pending(BIO *b);

int BIO_wpending(BIO *b);

size_t BIO_ctrl_pending(BIO *b);
size_t BIO_ctrl_wpending(BIO *b);

int BIO_get_info_callback(BIO *b,bio_info_cb **cbp);
int BIO_set_info_callback(BIO *b,bio_info_cb *cb);

typedef void bio_info_cb(BIO *b, int oper, const char *ptr, int argl, long arg2, long arg3);

DESCRIPTION

BIO_ctrl(), BIO_callback_ctrl() BIO_ptr_ctrl() andBIO _int_ctrl() are BIO “control” operations tak-

ing arguments of various types. These functions are not normally called directly, various macros are
used instead. The standard macros are described below, macros specific to a particul@® @ypesof
described in the specific BIOs manual page as well as any special features of the standard calls.

BIO_reset()typically resets &10 to some initial state, in the case of file related BIOs for example it
rewinds the file pointer to the start of the file.

BIO_seek(yesets a file relateBIO’s (that is file descriptor angILE BIOs) file position pointer tofs
bytes from start of file.

BIO _tell() returns the current file position of a file relaB@.

BIO_flush()normally writes out any internally buffered data, in some cases it is used toEifrehd
that no more data will be written.

BIO_eof()returns 1 if theBIO has readOF, the precise meaning oEOF’ varies according to thelO
type.
BIO_set_close(3ets theBIO b close flag tdlag. flag can take the valuBlO_CLOSEor BIO_NOCLOSE

Typically BIO_CLOSEIs used in a source/sikO to indicate that the underlying 1/O stream should be
closed when thalO is freed.

BIO_get_close(jeturns the BIOs close flag.

BIO_pending() BIO_ctrl_pending() BIO_wpending(Jand BIO_ctrl_wpending(yeturn the number of
pending characters in the BIOs read and write buffers. Not all BIOs support these calls.
BIO_ctrl_pending()and BIO_ctrl_wpending(return a size_t type and are functioB$Q_pending()
andBIO_wpending(are macros which caBlO_ctrl().

RETURN VALUES

96

BIO_reset()normally returns 1 for success and 0 or —1 for failure. File BIOs are an exception, they
return O for success and -1 for failure.

BIO_seek(pndBIO _tell() both return the current file position on success and -1 for failure, except file
BlOs which forBIO_seek(always return O for success and -1 for failure.

2000-09-19 0.9.7c

BIO_ctrl(3) OpenSSL BIO_ctrl(3)

BIO_flush()returns 1 for success and 0 or -1 for failure.
BIO_eof()returns 1 ifEOF has been reached 0 otherwise.
BIO_set_close(@lways returns 1.

BIO_cet_close(yeturns the close flag valugiO_CLOSEor BIO_NOCLOSE

BIO_pending() BIO_ctrl_pending() BIO_wpending(and BIO_ctrl_wpending(return the amount of
pending data.

NOTES
BIO_flush(), because it can write data may return O or -1 indicating that the call should be retried later
in a similar manner t810_write(). TheBIO_should_retry(rall should be used and appropriate action
taken is the call fails.

The return values aBIO_pending()and BIO_wpending()may not reliably determine the amount of
pending data in all cases. For example in the case ofBdilsome data may be available in #eE
structures internal buffers but it is not possible to determine this in a portably way. For other types of
BIO they may not be supported.

Filter BIOs if they do not internally handle a particuBl©_ctrl() operation usually pass the operation
to the nexBIO in the chain. This often means there is no need to locate the reguiréal a particu-
lar operation, it can be called on a chain and it will be automatically passed to the @ievaddw-
ever this can cause unexpected results: for example no current filter BIOs impB@eseek(), but
this may still succeed if the chain ends iRileE or file descriptoBIO.

Source/sink BIOs return an 0 if thdo not recognize thBIO_ctrl() operation.

BUGS
Some of the return values are ambiguous and care should be taken. In particular a return value of 0 can
be returned if an operation is not supported, if an error occurieédfifias not been reached and in the
case oBIO_seek(pn a fileBIO for a successful operation.

SEE ALSO
TBA

0.9.7c 2000-09-19 97

BIO _f base64(3) OpenSSL BIO_f base64(3)

NAME

BIO _f base64 — base64 BIO filter

SYNOPSIS

#include <openssl/bio.h>
#include <openssl/evp.h>

BIO_METHOD * BIO_f base64(void);

DESCRIPTION

BIO_f base64(Jeturns the base@lIO method. This is a filteBIO that base64 encodes any data writ-
ten through it and decodes any data read through it.

Base64 BlIOs do not supp@tO_gets()or BIO_puts().

BIO_flush()on a base6&I10 that is being written through is used to signal that no more data is to be
encoded: this is used to flush the final block througlBtbe

The flagBIO_FLAGS_BASE64_NO_NLcan be set witlBIO_set flags(}o encode the data all on one
line or expect the data to be all on one line.

NOTES

Because of the format of base64 encoding the end of the encoded block cannot always be reliably
determined.

RETURN VALUES

BIO_f base64(jeturns the base@lO method.

EXAMPLES

BUGS

Base64 encode the string “Hello World\n” and write the result to standard output:

BIO *bio, *b64;
char message[] = "Hello World \n";

b64 = BIO_new(BIO_f base64());

bio = BIO_new_fp(stdout, BIO_NOCLOSE);
bio = BIO_push(b64, bio);

BIO_write(bio, message, strlen(message));
BIO_flush(bio);

BIO_free_all(bio);
Read Base64 encoded data from standard input and write the decoded data to standard output:

BIO *bio, *b64, *bio_out;
char inbuf[512];
int inlen;

b64 = BIO_new(BIO_f base64());

bio = BIO_new_fp(stdin, BIO_NOCLOSE);

bio_out = BIO_new_fp(stdout, BIO_NOCLOSE);

bio = BIO_push(b64, bio);

while((inlen = BIO_read(bio, inbuf, 512) > 0)
BIO_write(bio_out, inbuf, inlen);

BIO_free_all(bio);

The ambiguity ofEOFin base64 encoded data can cause additional data following the base64 encoded
block to be misinterpreted.

There should be some way of specifying a test thaBithecan perform to reliably determimgOF (for
example avIME boundary).

SEE ALSO

98

TBA

2003-05-19 0.9.7c

BIO_f buffer(3) OpenSSL BIO_f buffer(3)

NAME
BIO_f buffer — buffering BIO

SYNOPSIS
#include <openssl/bio.h>

BIO_METHOD * BIO_f_buffer(void);
#define BIO_get buffer_num_lines(b) BIO_ctrl(b,BIO_C_GET_BUFF_NUM_LINES,0,NULL)
#define BIO_set_read_buffer_size(b,size) BIO_int_ctrl(b,BIO_C_SET_BUFF_SIZE,size,0)

#define BIO_set_write_buffer_size(b,size) BIO_int_ctrl(b,BIO_C _SET BUFF_SIZE,size,1)
#define BIO_set_buffer_size(b,size) BIO_ctrl(b,BIO_C_SET BUFF_SIZE,size,NULL)

#define BIO_set_buffer_read_data(b,buf,num) BIO_ctrl(b,BIO_C_SET_BUFF_READ_DATA,num,buf)

DESCRIPTION
BIO_f buffer(returns the bufferinglO method.

Data written to a bufferinglO is buffered and periodically written to the n®&tO in the chain. Data
read from a bufferin@lO comes from an internal buffer which is filled from the rixd in the chain.
Both BIO_gets(JandBIO_puts()are supported.

Calling BIO_reset()on a bufferingglO clears any buffered data.
BIO_get_buffer_num_lines(@turns the number of lines currently buffered.

BIO_set_read_buffer_size@lO_set_write_buffer_sizegndBIO_set_buffer_size§et the read, write
or both read and write buffer sizessiae The initial buffer size IDEFAULT_BUFFER_SIZE currently
1024. Any attempt to reduce the buffer size beltBRFAULT BUFFER_SIZEis ignored. Any buffered
data is cleared when the buffer is resized.

BIO_set buffer_read_data)ears the read buffer and fills it wittum bytes ofbuf. If num is larger
than the current buffer size the buffer is expanded.

NOTES
Buffering BIOs implemenBIO_gets(by usingBIO_read()operations on the ne®lO in the chain. By
prepending a bufferinglO to a chain it is therefore possible to provel® gets()functionality if the
following BIOs do not support it (for exampBSLBIOS).

Data is only written to the neglO in the chain when the write buffer fills or wh&hO_flush()is

called. It is therefore important to c&810_flush()whenever any pending data should be written such

as when removing a bufferirgjO usingBIO_pop().BIO_flush()may need to be retried if the ultimate
source/sinkI0 is non blocking.

RETURN VALUES
BIO_f buffer(returns the bufferinglO method.

BIO_get_buffer_num_lines(@turns the number of lines buffered (may be 0).

BIO_set_read_buffer_size(BIO_set write_buffer_size@nd BIO_set_buffer_size(jeturn 1 if the
buffer was successfully resized or 0 for failure.

BIO_set_huffer_read_data@turns 1 if the data was set correctly or 0 if there was an error.

SEE ALSO
TBA

0.9.7c 2000-09-19 99

BIO_f cipher(3) OpenSSL BIO_f cipher(3)

NAME
BIO_f cipher, BIO_set_cipher, BIO_get_cipher_status, BIO_get_cipher_ctx — cipher BIO filter

SYNOPSIS
#include <openssl/bio.h>
#include <openssl/evp.h>

BIO_METHOD * BIO_f cipher(void);
void BIO_set_cipher(BIO *b,const EVP_CIPHER *cipher,
unsigned char *key, unsigned char *iv, int enc);
int BIO_get cipher_status(BIO *b)
int BIO_get cipher_ctx(BIO *b, EVP_CIPHER_CTX **pctx)

DESCRIPTION
BIO_f cipher()returns the cipheBIO method. This is a filteBIO that encrypts any data written
through it, and decrypts any data read from it. It isBl@ wrapper for the cipher routines
EVP_Cipherlnit() EVP_CipherUpdate@ndEVP_CipherFinal()

Cipher BIOs do not suppoiO_gets()or BIO_puts()

BIO_flush()on an encryptiomIO that is being written through is used to signal that no more data is to

be encrypted: this is used to flush and possibly pad the final block througjiothe

BIO_set_cipher(ksets the cipher @IO b to cipher using keykey andIV iv. encshould be set to 1 for
encryption and zero for decryption.

When reading from an encrypti®iO the final block is automatically decrypted and checked when

EOF is detectedBIO_get cipher_status(s a BIO_ctrl() macro which can be called to determine
whether the decryption operation was successful.

BIO_get_cipher_ctx(Js a BIO_ctrl() macro which retrieves the intern&lO cipher context. The

retrieved context can be used in conjunction with the standard cipher routines to set it up. This is useful

whenBIO_set_cipher()s not flexible enough for the applications needs.

NOTES
When encryptindgBIO_flush()must be called to flush the final block through ®i©. If it is not then
the final block will fail a subsequent decrypt.

When decrypting an error on the final block is signalled by a zero return value from the read operation.

A successful decrypt followed BOF will also return zero for the final reaBIO_get_cipher_status()
should be called to determine if the decrypt was successful.

As always, ifBIO_gets()or BIO_puts()support is needed then it can be achieved by preceding the

cipherBIO with a bufferingBlO.

RETURN VALUES
BIO_f cipher(returns the cipheBlO method.

BIO_set_cipher(loes not return a value.
BIO_get_cipher_status(eturns 1 for a successful decrypt and 0 for failure.
BIO_get_cipher_ctx(@urrently always returns 1.

EXAMPLES
TBA

SEE ALSO
TBA

100 2003-02-27 0.9.7c

BIO_f md(3) OpenSSL BIO_f md(3)

NAME
BIO_f md, BIO_set md, BIO_get_md, BIO_get md_ctx — message digest BIO filter

SYNOPSIS
#include <openssl/bio.h>
#include <openssl/evp.h>
BIO_METHOD * BIO_f md(void);
int BIO_set md(BIO *b,EVP_MD *md);
int BIO_get md(BIO *b,EVP_MD **mdp);
int BIO_get md_ctx(BIO *b,EVP_MD_CTX **mdcp);
DESCRIPTION
BIO_f md()returns the message dige&80 method. This is a filteBIO that digests any data passed

through it, it is aBIO wrapper for the digest routindsVP_Digestlnit() EVP_DigestUpdate(and
EVP_DigestFinal()

Any data written or read through a digeé#d usingBIO_read()andBIO_write()is digested.

BIO_gets(), if itssize parameter is large enough finishes the digest calculation and returns the digest
value.BIO_puts()is not supported.

BIO_reset(¥einitialises a digessIO.

BIO_set_md(ksets the message digestBO b to md: this must be called to initialize a diges
before ag data is passed through it. It iB& _ctrl() macro.

BIO_get_md(places the a pointer to the digest BIOs digest methodlim it is a BIO_ctrl()macro.
BIO _get_md_ctx()eturns the digest BIOs context intwlcp.

NOTES

The context returned B§10O_get md_ctx(@an be used in calls #©VP_DigestFinal(and also the sig-
nature routineEVP_SignFinal(JandEVP_ VerifyFinal()

The context returned BBIO_get_md_ctx()s an internal context structure. Changes made to this con-
text will affect the digesBIO itself and the context pointer will become invalid when the dig&sts
freed.

After the digest has been retrieved from a digéStit must be reinitialized by callinBIO_reset(), or
BIO_set_md(pefore any more data is passed through it.

If an application needs to ca@llO_gets()or BIO_puts()through a chain containing digest BIOs then
this can be done by prepending a buffegng.

RETURN VALUES
BIO_f _md()returns the dige®10 method.
BIO_set_ md()BIO_get md(andBIO_md_ctx(yreturn 1 for success and 0 for failure.

EXAMPLES
The following example createsBaO chain containing aisHA1 and MD5 digestBIO and passes the
string “Hello World” through it. Error checking has been omitted for clarity.

0.9.7c 2001-09-07 101

BIO_f md(3) OpenSSL BIO_f md(3)

BIO *bio, *mdtmp;
char message[] = "Hello World";
bio = BIO_new(BIO_s_null());
mdtmp = BIO_new(BIO_f md());
BIO_set_md(mdtmp, EVP_shal());
/* For BIO_push() we want to append the sink BIO and keep a note of
* the start of the chain.
*/
bio = BIO_push(mdtmp, bio);
mdtmp = BIO_new(BIO_f md());
BIO_set_md(mdtmp, EVP_md5());
bio = BIO_push(mdtmp, bio);
/* Note: mdtmp can now be discarded */
BIO_write(bio, message, strlen(message));

The next example digests data by reading through a chain instead:

BIO *bio, *mdtmp;
char buf[1024];
int rdlen;
bio = BIO_new_file(file, "rb");
mdtmp = BIO_new(BIO_f _md());
BIO_set_md(mdtmp, EVP_shal());
bio = BIO_push(mdtmp, bio);
mdtmp = BIO_new(BIO_f _md());
BIO_set_md(mdtmp, EVP_md5());
bio = BIO_push(mdtmp, bio);
do {
rdlen = BIO_read(bio, buf, sizeof(buf));
/* Might want to do something with the data here */
} while(rdlen > 0);

This next example retrieves the message digests f@i@ ehain and outputs them. This could be used
with the examples above.

BIO *mdtmp;
unsigned char mdbuf[EVP_MAX_MD_SIZE];
int mdlen;
int i;
mdtmp = bio; /* Assume bio has previously been set up */
do {
EVP_MD *md;

mdtmp = BIO_find_type(mdtmp, BIO_TYPE_MD);
if(!mdtmp) break;
BIO_get_md(mdtmp, &md);
printf("%s digest", OBJ_nid2sn(EVP_MD_type(md)));
mdlen = BIO_gets(mdtmp, mdbuf, EVP_MAX_ MD_SIZE);
for(i = 0; i < mdlen; i++) printf(":%02X", mdbuf{i]);
printf("\n");
mdtmp = BIO_next(mdtmp);
} while(mdtmp);
BIO_free_all(bio);
BUGS
The lack of support foBIO_puts()and the non standard behaviouBd© _gets()could be regarded as
anomalous. It could be argued tlBO gets()andBIO_puts()should be passed to the n&® in the

chain and digest the data passed through and that digests should be retrieved using a separate
BIO_ctrl() call.

SEE ALSO
TBA

102 2001-09-07 0.9.7c

BIO_f null(3) OpenSSL BIO_f null(3)

NAME
BIO_f _null — null filter

SYNOPSIS
#include <openssl/bio.h>
BIO_METHOD * BIO_f null(void);
DESCRIPTION
BIO_f _null()returns the null filteBIO method. This is a filteBIO that does nothing.

All requests to a null filteBIO are passed through to the néx®d in the chain: this means thaB#O
chain containing a null filteBIO behaves just as though tBg was not there.

NOTES
As may be apparent a null filtBrO is not particularly useful.

RETURN VALUES
BIO_f null()returns the null filteBIO method.

SEE ALSO
TBA

0.9.7c 2000-09-14 103

BIO_f ssl(3) OpenSSL BIO_f ssl(3)

NAME

BIO f ssl, BIO set ssl, BIO get ssl, BIO set ssl mode, BIO_set ssl renegotiate bytes,
BIO_get num_renegotiates, BIO_set ssl_renegotiate_timeout, BIO_new_ssl, BIO_new_ss|_connect,
BIO_new_buffer_ssl_connect, BIO_ssl_copy_session_id, BIO_ss|_shutdown — SSL BIO

SYNOPSIS

#include <openssl/bio.h>
#include <openssl/ssl.h>

BIO_METHOD *BIO_f ssl(void);

#define BIO_set_ssl(b,ssl,c) BIO_ctrl(b,BIO_C_SET_SSL,c,(char *)ssl)

#define BIO_get_ssl(b,sslp) BIO_ctrl(b,BIO_C_GET_SSL,0,(char *)sslp)

#define BIO_set_ssl_mode(b,client) BIO_ctrl(b,BIO_C_SSL_MODE,client,NULL)

#define BIO_set_ssl_renegotiate bytes(b,num) \
BIO_ctrl(b,BIO_C_SET_SSL_RENEGOTIATE_BYTES,num,NULL);

#define BIO_set_ssl_renegotiate_timeout(b,seconds) \
BIO_ctrl(b,BIO_C_SET_SSL_RENEGOTIATE_TIMEOUT,seconds,NULL);

#define BIO_get_num_renegotiates(b) \
BIO_ctrl(b,BIO_C_SET_SSL_NUM_RENEGOTIATES,0,NULL);

BIO *BIO_new_ssl(SSL_CTX *ctx,int client);

BIO *BIO_new_ssl_connect(SSL_CTX *ctx);

BIO *BIO_new_buffer_ssl_connect(SSL_CTX *ctx);
int BIO_ssl_copy_session_id(BIO *to,BIO *from);
void BIO_ssl|_shutdown(BIO *hio);

#define BIO_do_handshake(b) BIO_ctrl(b,BIO_C _DO_STATE_MACHINE,O,NULL)

DESCRIPTION

104

BIO_f ssl()returns thesSL BIO method. This is a filteBIO which is a wrapper round the OpenSSL
SSLroutines adding &I0 “flavour” to SSLI/O.

I/O performed on arsSL BIO communicates using th&SL protocol with the SSLs read and write
BlOs. If anSSL connection is not established then an attempt is made to establish one on the first I/O
call.

If a BIO is appended to a®SL BlIOusingBIO_push()it is automatically used as ti$sSL BIOs read and
write BIOs.

Calling BIO_reset()on anSSL BIO closes down any currer8SL connection by callingSSL_shut-
down().BIO_reset()is then sent to the neRtO in the chain: this will typically disconnect the underly-
ing transport. Th&SL BIOis then reset to the initial accept or connect state.

If the close flag is set when @&sL BIOis freed then the intern&SL structure is also freed using
SSL_free()

BIO_set_ssl(sets the interna8SL pointer ofBIO b to sslusing the close flag

BIO_get_ssl(retrieves thesSL pointer of BIO b, it can then be manipulated using the standssd
library functions.

BIO_set_ssl_mode§ets theSSL BIO mode toclient. If client is 1 client mode is set. fflient is O
server mode is set.

BIO_set_ssl_renegotiate_bytes@ts the renegotiate byte countniam. When set after evergum
bytes of I/O (read and write) th&SL session is automatically renegotiatadm must be at least 512
bytes.

BIO_set_ssl_renegotiate_timeoutfts the renegotiate timeoutseconds When the renegotiate time-
out elapses the session is automatically renegotiated.

BIO_get_num_renegotiateg@turns the total number of session renegotiations due to 1/O or timeout.
BIO_new_ssl(nllocates aisSL BIOusingSSL_CTXctx and using client mode dlient is non zero.

BIO_new_ssl_connectfreates a newlO chain consisting of asSL BIO (using ctx) followed by a
connectIO.

2000-09-16 0.9.7c

BIO_f ssl(3) OpenSSL BIO_f ssl(3)

BIO_nev_buffer_ssl_connect@reates a nevlO chain consisting of auffering BIO, an SSL BIO
(usingctx) and a conne@lO.

BIO_ssl|_copy_session_id{ppies arSSL session id betweeBIO chainsfrom andto. It does this by
locating theSSLBIOs in each chain and callir@SL_copy_session_id{ the internaSSL pointer.

BIO_ssl_shutdown@loses down asSL connection orBIO chainbio. It does this by locating th&SL
BIO in the chain and callin§SL_shutdown@n its internaSL pointer.

BIO_do_handshake@ttempts to complete &85L handshake on the suppligtO and establish th&SL
connection. It returns 1 if the connection was established successfully. A zero or negative value is
returned if the connection could not be established, th&tallshould_retry(should be used for non
blocking connect BIOs to determine if the call should be retried. #surconnection has already been
established this call has no effect.

NOTES

SSLBIOs are exceptional in that if the underlying transport is non blocking they can still request a retry
in exceptional circumstances. Specifically this will happen if a session renegotiation takes place during
aBIO_read()operation, one case where this happens is \8@&or step up occurs.

In OpenSSL 0.9.6 and later tBsLflag SSL_AUTO_RETRYcan be set to disable this behaviour. That is
when this flag is set @SL BlOusing a blocking transport will never request a retry.

Since unknowrBIO_ctrl() operations are sent through filter BIOs the servers name and port can be set
usingBIO_set_host(pn theBIO returned byBIO new_ssl_connectf)ithout having to locate the con-
nectBIO first.

Applications do not have to cdlllO_do_handshakefut may wish to do so to separate the handshake
process from other I/O processing.

RETURN VALUES

TBA

EXAMPLE

0.9.7c

This SSL/TLSclient example, attempts to retrieve a page fror8g0TLSweb server. The 1/O routines
are identical to those of the unencrypted exampR@ s_conned).

BIO *sbio, *out;

int len;

char tmpbuf[1024];

SSL_CTX *ctx;

SSL *ssl;
ERR_load_crypto_strings();
ERR_load_SSL _strings();
OpenSSL_add_all_algorithms();

/* We would seed the PRNG here if the platform didn't
* do it automatically
*/
ctx = SSL_CTX_new(SSLv23 _client_method());
/* We'd normally set some stuff like the verify paths and
* mode here because as things stand this will connect to
* any server whose certificate is signed by any CA.
*/
shio = BIO_new_ssl_connect(ctx);
BIO_get_ssl(sbio, &ssl);

if(!ssl) {
fprintf(stderr, "Can’t locate SSL pointer\n®);
[* whatever ... */

2000-09-16 105

BIO_f ssl(3) OpenSSL BIO_f ssl(3)

/* Don’'t want any retries */
SSL_set_mode(ssl, SSL_ MODE_AUTO_RETRY);

/* We might want to do other things with ssl here */
BIO_set_conn_hostname(sbio, "localhost:https");

out = BIO_new_fp(stdout, BIO_NOCLOSE);
if(BIO_do_connect(sbhio) <= 0) {
fprintf(stderr, "Error connecting to server\n");
ERR_print_errors_fp(stderr);
[* whatever ... */
}
if(BIO_do_handshake(shio) <= 0) {
fprintf(stderr, "Error establishing SSL connection\n");
ERR_print_errors_fp(stderr);
/* whatever ... */

}

/* Could examine ssl here to get connection info */
BIO_puts(sbhio, "GET / HTTP/1.0\n\n");

for(;;) {
len = BIO_read(sbio, tmpbuf, 1024);
if(len <= 0) break;
BIO_write(out, tmpbuf, len);

}

BIO_free_all(shio);
BIO_free(out);

Here is a simple server example. It makes use of a bufferingp allow lines to be read from ti8sL
BIO using BIO_gets. It creates a pseudo web page containing the actual request from a client and also
echoes the request to standard output.

BIO *sbio, *bbio, *acpt, *out;
int len;

char tmpbuf[1024];
SSL_CTX *ctx;

SSL *ssl;

ERR_load_crypto_strings();

ERR_load_SSL _strings();
OpenSSL_add_all_algorithms();

/* Might seed PRNG here */

ctx = SSL_CTX_new(SSLv23 server_method());

if ISSL_CTX_use_certificate_file(ctx,"server.pem",SSL_FILETYPE_PEM)
M ISSL_CTX_ use_PrivateKey file(ctx,"server.pem",SSL_FILETYPE_PEM)
@ ISSL_CTX_check private_key(ctx)) {

fprintf(stderr, "Error setting up SSL_CTX\n");
ERR_print_errors_fp(stderr);
return O;

}

/* Might do other things here like setting verify locations and
* DH and/or RSA temporary key callbacks
*/
/* New SSL BIO setup as server */
shio=BIO_new_ssl(ctx,0);

BIO_get_ssl(sbio, &ssl);

106 2000-09-16 0.9.7c

BIO_f ssl(3) OpenSSL

0.9.7c

if(!ssl) {
fprintf(stderr, "Can’t locate SSL pointer\n®);
/* whatever ... */

}

/* Don’'t want any retries */
SSL_set_mode(ssl, SSL_ MODE_AUTO_RETRY);

/* Create the buffering BIO */
bbio = BIO_new(BIO_f_buffer());

/* Add to chain */
shio = BIO_push(bbio, shio);

acpt=BIO_new_accept("4433");

/* By doing this when a new connection is established
* we automatically have sbio inserted into it. The
* BIO chain is now 'swallowed’ by the accept BIO and
* will be freed when the accept BIO is freed.
*/
BIO_set_accept_bios(acpt,shio);
out = BIO_new_fp(stdout, BIO_NOCLOSE);

/* Setup accept BIO */

if(BIO_do_accept(acpt) <= 0) {
fprintf(stderr, "Error setting up accept BIO\n");
ERR_print_errors_fp(stderr);
return O;

}

/* Now wait for incoming connection */
if(BIO_do_accept(acpt) <= 0) {
fprintf(stderr, "Error in connection\n");
ERR_print_errors_fp(stderr);
return O;

}

/* We only want one connection so remove and free
* accept BIO
*/
shio = BIO_pop(acpt);
BIO_free_all(acpt);
if(BIO_do_handshake(shio) <= 0) {
fprintf(stderr, "Error in SSL handshake\n");

ERR_print_errors_fp(stderr);
return O;

}

BIO_puts(shio, "HTTP/1.0 200 OK\r\nContent-type: text/htmi\rin\r\n");
BIO_puts(shio, "<pre>\r\nConnection Established\r\nRequest headers:\r\n");
BIO_puts(shio, " \r\n");

for(;;) {

len = BIO_gets(sbio, tmpbuf, 1024);

if(len <= 0) break;

BIO_write(sbio, tmpbuf, len);

BIO_write(out, tmpbuf, len);

/* Look for blank line signifying end of headers*/
if((tmpbuf[0] == "\r") @ (tmpbuf[0] =="\n")) break;

2000-09-16

BIO_f ssl(3)

107

BIO_f ssl(3) OpenSSL BIO_f ssl(3)

BIO_puts(shio, " \r\n");
BIO_puts(shio, "</pre>\r\n");

/* Since there is a buffering BIO present we had better flush it */
BIO_flush(sbio);

BIO_free_all(sbhio);

SEE ALSO
TBA

108 2000-09-16 0.9.7c

BIO_find_type(3) OpenSSL BIO_find_type(3)

NAME
BIO_find_type, BIO_next — BIO chain traversal

SYNOPSIS
#include <openssl/bio.h>
BIO* BIO_find_type(BIO *b,int bio_type);
BIO* BIO_next(BIO *b);

#define BIO_method_type(b) ((b)->method->type)
#define BIO_TYPE_NONE 0

#define BIO_TYPE_MEM (10 0x0400)

#define BIO_TYPE_FILE (20 0x0400)

#define BIO_TYPE_FD (40 0x0400 Mx0100)

#define BIO_TYPE_SOCKET (5[0x0400 [Dx0100)
#define BIO_TYPE_NULL (60 0x0400)

#define BIO_TYPE_SSL (7O 0x0200)

#define BIO_TYPE_MD (80 0x0200)

#define BIO_TYPE_BUFFER (9[0x0200)

#define BIO_TYPE_CIPHER (10 [Dx0200)
#define BIO_TYPE_BASE64 (11 [Dx0200)
#define BIO_TYPE_CONNECT (12 [Dx0400 Mx0100)

#define BIO_TYPE_ACCEPT (13 [Dx0400 Mx0100)

#define BIO_TYPE_PROXY_CLIENT (14 [Dx0200)
#define BIO_TYPE_PROXY_SERVER (15 [Dx0200)

#define BIO_TYPE_NBIO_TEST (16 [Dx0200)
#define BIO_TYPE_NULL_FILTER (17 [Dx0200)
#define BIO_TYPE_BER (180 0x0200)
#define BIO_TYPE_BIO (190 0x0400)
#define BIO_TYPE_DESCRIPTOR 0x0100

#define BIO_TYPE_FILTER 0x0200
#define BIO_TYPE_SOURCE_SINK 0x0400

DESCRIPTION

TheBIO_find_type(kearches for BIO of a given type in a chain, startinggO b. If type is a specific
type (such ag8lO0_TYPE_MEM) then a search is made foB#D of that type. Iftype is a general type
(such aBl10_TYPE_SOURCE_SINK) then the next matchinglO of the given general type is searched
for. BIO_find_type(yeturns the next matchirgjO or NULL if none is found.

Note: not all theBIO_TYPE_* types above have correspondii@ implementations.

BIO_next()returns the nex8IO in a chain. It can be used to traverse all BIOs in a chain or used in con-
junction withBIO_find_type(}o find all BIOs of a certain type.

BIO_method_typefeturns the type of alO.

RETURN VALUES
BIO_find_type(yeturns a matchinglO or NULL for no match.

BIO_next(returns the nex@lO in a chain.
BIO_method_typefeturns the type of th@lO b.

NOTES
BIO_next()was added to OpenSSL 0.9.6 to provide a 'clean’ way to traves&® ehain or find multi-
ple matches usinBlO_find_type(). Previous versions had to use:
next = bio->next_hio;

BUGS
BIO_find_type()in OpenSSL 0.9.5a and earlier could not be safely passad la pointer for theb
argument.

0.9.7c 2000-09-14 109

BIO_find_type(3) OpenSSL BIO_find_type(3)

EXAMPLE
Traverse a chain looking for digest BIOs:

BIO *btmp;

btmp = in_bio; /* in_bio is chain to search through */

do {
btmp = BIO_find_type(btmp, BIO_TYPE_MD);
if(btmp == NULL) break; /* Not found */
/* btmp is a digest BIO, do something with it ...*/

btmp = BIO_next(btmp);
} while(btmp);

SEE ALSO
TBA

110 2000-09-14 0.9.7c

BIO_new(3) OpenSSL BIO_new(3)

NAME

BIO_new, BIO_set, BIO_free, BIO_vfree, BIO_free_all — BIO allocation and freeing functions

SYNOPSIS

#include <openssl/bio.h>

BIO* BIO_new(BIO_METHOD *type);

int BIO_set(BIO *a,BIO_METHOD *type);
int BIO free(BIO *a);

void BIO_vfree(BIO *a);

void BIO free_all(BIO *a);

DESCRIPTION

TheBIO_new()function returns a ne®IO using methodype.
BIO_set()sets the method of an already existing.

BIO_free()frees up a singlelo, BIO_vfree()also frees up a sing®O but it does not return a value.
Calling BIO_free()may also have some effect on the underlying I/O structure, for example it may close
the file being referred to under certain circumstances. For more details see the indiddM&THOD
descriptions.

BIO_free_all()frees up an entirBIO chain, it does not halt if an error occurs freeing up an individual
BIO in the chain.

RETURN VALUES

BIO_new()returns a newly create&lO or NULL if the call fails.
BIO_set() BIO_free()return 1 for success and 0 for failure.
BIO_free_all()andBIO_vfree()do not return values.

NOTES

Some BIOs (such as memory BIOs) can be used immediately after &llingew(). Others (such as
file BIOs) need some additional initialization, and frequently a utility function exists to create and ini-
tialize such BIOs.

If BIO_free()is called on @10 chain it will only free onIO resulting in a memory leak.

Calling BIO_free_all()a singleBIO has the same effect as calliB¢O_free()on it other than the dis-
carded return value.

Normally thetype argument is supplied by a function which returns a pointer B6{OaMETHOD.
There is a naming convention for such functions: a sourcesinis normally called BIO_s_*() and a
filter BIO BIO_f _*();

EXAMPLE

Create a memorgIO:
BIO *mem = BIO_new(BIO_s_mem());

SEE ALSO

0.9.7c

TBA

2000-09-16 111

BIO_push(3) OpenSSL BIO_push(3)

NAME
BIO_push, BIO_pop - add and remove BIOs from a chain.

SYNOPSIS
#include <openssl/bio.h>

BIO* BIO_push(BIO *b,BIO *append);
BIO* BIO_pop(BIO *b);
DESCRIPTION
TheBIO_push()function appends thglO appendto b, it returnsb.

BIO_pop()removes th&l0O b from a chain and returns the n&© in the chain, oNULL if there is no
nextBIO. The removedIO then becomes a singBO with no association with the original chain, it
can thus be freed or attached to a different chain.

NOTES
The names of these functions are perhaps a little misleali@g push()joins twoBIO chains whereas
BIO_pop()deletes a singlBIO from a chain, the delete®lO does not need to be at the end of a chain.

The process of callinBlO_push()JandBIO_pop()on aBIO may have additional consequences (a con-
trol call is made to the affected BIOs) any effects will be noted in the descriptions of individual BIOs.

EXAMPLES
For these examples suppaedl andmd2 are digest BIO$64 is a base6&10 andf is a fileBIO.

If the call:
BIO_push(b64, f);
is made then the new chain will b84—chain. After making the calls

BIO_push(md2, b64);
BIO_push(mdl, md2);

the new chain isnd1-md2-b64—f. Data written tand1 will be digested byndl andmd2, base64
encoded and written fo

It should be noted that reading causes data to pass in the reverse direction, that is data is fead from

base64lecodedand digested bynd1l andmd2. If the call:
BIO_pop(md2);
The call will returnb64 and the new chain will bemd1-b64—fdata can be written tmd1 as before.

RETURN VALUES
BIO_push(¥eturns the end of the chalm,

BIO_pop()returns the nexIO in the chain, oNULL if there is no nexBIO.

SEE ALSO
TBA

112 2000-09-14 0.9.7c

BIO_read(3) OpenSSL BIO_read(3)

NAME

BIO_read, BIO_write, BIO_gets, BIO_puts — BIO I/O functions

SYNOPSIS

#include <openssl/bio.h>

int BIO_read(BIO *b, void *buf, int len);

int BIO _gets(BIO *b,char *buf, int size);

int BIO_write(BIO *b, const void *buf, int len);
int BIO_puts(BIO *b,const char *buf);

DESCRIPTION

BIO_read()attempts to reakn bytes fromBIO b and places the data lf.

BIO_gets()performs the BIOs “gets” operation and places the datauin Usually this operation will
attempt to read a line of data from #Bi® of maximum lengtHen. There are exceptions to this how-
ever, for exampl®IO_gets(Jon a digesBIO will calculate and return the digest and other BIOs may
not supporBIO_gets(jat all.

BIO_write() attempts to writéen bytes frombuf to BIO b.
BIO_puts()attempts to write a null terminated stringf to BIO b

RETURN VALUES

All these functions return either the amount of data successfully read or written (if the return value is
positive) or that no data was successfully read or written if the result is 0 or —1. If the return value is -2
then the operation is not implemented in the speBifictype.

NOTES

A 0 or -1 return is not necessarily an indication of an error. In particular when the source/sink is non-
blocking or of a certain type it may merely be an indication that no data is currently available and that
the application should retry the operation later.

One technique sometimes used with blocking sockets is to use a system call &lebtg@spoll() or
equivalent) to determine when data is available and themezal() to read the data. The equivalent

with BIOs (that is callselect()on the underlying 1/0O structure and then &lO_read()to read the

data) shouldhot be used because a single calBt® read()can cause several reads (and writes in the
case ofSSL BIOs) on the underlying I/O structure and may block as a result. Insééaat()(or equiv-

alent) should be combined with non blocking I/O so successive reads will request a retry instead of
blocking.

SeeBIO_should_retry3) for details of how to determine the cause of a retry and other I/O issues.

If the BIO_gets()function is not supported by O then it possible to work around this by adding a
bufferingBIO BIO_f_buffer3) to the chain.

SEE ALSO

0.9.7c

BIO_should_retry3)
TBA

2000-09-16 113

BIO_s accept(3) OpenSSL BIO_s_accept(3)

NAME

BIO_s_accept, BIO_set_accept_port, BIO_get_accept_port, BIO_set_nbio_accept,
BIO_set_accept_bios, BIO_set bind_mode, BIO_get_bind_mode, BIO_do_accept — accept BIO

SYNOPSIS

#include <openssl/bio.h>
BIO_METHOD *BIO_s_accept(void);

long BIO_set_accept_port(BIO *b, char *name);
char *BIO_get_accept_port(BIO *b);

BIO *BIO_new_accept(char *host_port);

long BIO_set_nbio_accept(BIO *b, int n);

long BIO_set_accept_bios(BIO *b, char *bio);
long BIO_set_bind_mode(BIO *b, long mode);
long BIO_get_bind_mode(BIO *b, long dummy);

#define BIO_BIND_NORMAL 0
#define BIO_BIND_REUSEADDR_IF_UNUSED 1
#define BIO_BIND_REUSEADDR 2

int BIO_do_accept(BIO *b);

DESCRIPTION

114

BIO_s_accept(yeturns the acce@lO method. This is a wrapper round the platform@&P/IP socket
accept routines.

Using accept BIOSTCP/IP connections can be accepted and data transferred usinglonfgutines.
In this way any platform specific operations are hidden bgtbebstraction.

Read and write operations on an acapt will perform 1/0 on the underlying connection. If no con-
nection is established and the port (see below) is set up properly thetotheaits for an incoming
connection.

Accept BIOs suppomBIO_puts()but notBIO_gets()

If the close flag is set on an acc&pd then any active connection on that chain is shutdown and the
socket closed when ti®0 is freed.

Calling BIO_reset()on a accepBIO will close any active connection and reset Bi© into a state
where it awaits another incoming connection.

BIO _get_fd()andBIO_set fd(kan be called to retrieve or set the accept sockeBEees fd3)

BIO_set_accept_port()ses the stringameto set the accept port. The port is represented as a string of
the form “host:port”, where “host” is the interface to use and “port” is the port. Either or both values
can be “*” which is interpreted as meaning any interface or port respectively. “port” has the same syn-
tax as the port specified BIO_set _conn_port(Jor connect BIOs, that is it can be a numerical port
string or a string to lookup usirggtservbyname@nd a string table.

BIO_new_accept@ombinesBIO_new()andBIO_set_accept_port{hto a single call: that is it creates
a new acceplO with porthost_port.

BIO_set_nbio_accept§ets the accept socket to blocking mode (the defauitjsifO or non blocking
mode ifnis 1.

BIO_set_accept_bios@an be used to set a chain of BIOs which will be duplicated and prepended to
the chain when an incoming connection is received. This is useful if, for example, a buffes®ig or
BIO is required for each connection. The chain of BIOs must not be freed after this call, they will be
automatically freed when the acc&0 is freed.

BIO_set _bind_mode(Jand BIO_get bind_mode()set and retrieve the current bind mode. If
BIO_BIND_NORMAL (the default) is set then another socket cannot be bound to the same port. If
BIO_BIND_REUSEADDRIs set then other sockets can bind to the same poBiOIfBIND_REUSE-
ADDR_IF_UNUSEDiIs set then and attempt is first made to Bi€e BIN_NORMAL, if this fails and the

port is not in use then a second attempt is made B8@IND_REUSEADDR

2002-12-12 0.9.7c

BIO_s accept(3) OpenSSL BIO_s_accept(3)

BIO_do_accept(serves two functions. When it is first called, after the acB&pthas been setup, it
will attempt to create the accept socket and bind an address to it. Second and subsequent calls to
BIO_do_accept(}vill await an incoming connection, or request a retry in non blocking mode.

NOTES

When an accefIO is at the end of a chain it will await an incoming connection before processing I/O
calls. When an acceptO is not at then end of a chain it passes I/O calls to theBm@ih the chain.

When a connection is established a new soBl@tis created for the connection and appended to the
chain. That is the chain is now accept—>socket. This effectively means that attempting 1/0 on an initial
accept socket will await an incoming connection then perform 1/O on it.

If any additional BIOs have been set usBIi) set accept_biosfhen they are placed between the
socket and the acceplo, that is the chain will be accept—>otherbios—>socket.

If a server wishes to process multiple connections (as is normally the case) then thBlaccest be
made available for further incoming connections. This can be done by waiting for a connection and
then calling:

connection = BIO_pop(accept);

After this callconnectionwill contain aBIO for the recently established connection aaedeptwill
now be a singl&l0 again which can be used to await further incoming connections. If no further con-
nections will be accepted tlaeceptcan be freed usinglO_free()

If only a single connection will be processed it is possible to perform 1/0O using the Bdefself.
This is often undesirable however because the a&epuill still accept additional incoming connec-
tions. This can be resolved by usiBO _pop()(see above) and freeing up the aca&ipt after the ini-
tial connection.

If the underlying accept socket is non-blocking &1@_do_accept(js called to await an incoming
connection it is possible f@10_should_io_specialf)ith the reaso®IO_RR_ACCEPT If this happens

then it is an indication that an accept attempt would block: the application should take appropriate
action to wait until the underlying socket has accepted a connection and retry the call.

BIO_set_accept_port() BIO_get_accept_port(), BIO_set_nbio_accept() BIO_set_accept_bios()
BIO_set_bind_mode(BIO_get_bind_mode@ndBIO_do_accept(®re macros.

RETURN VALUES

TBA

EXAMPLE

0.9.7c

This example accepts two connections on port 4444, sends messages down each and finally closes both
down.

BIO *abio, *cbio, *cbio2;

ERR_load_crypto_strings();

abio = BIO_new_accept("4444");

/* First call to BIO_accept() sets up accept BIO */
if(BIO_do_accept(abio) <= 0) {
fprintf(stderr, "Error setting up accept\n);
ERR_print_errors_fp(stderr);
exit(0);

2002-12-12 115

BIO_s accept(3) OpenSSL

/* Wait for incoming connection */
if(BIO_do_accept(abio) <= 0) {
fprintf(stderr, "Error accepting connection\n");
ERR_print_errors_fp(stderr);
exit(0);
}
fprintf(stderr, "Connection 1 established\n");
/* Retrieve BIO for connection */
cbio = BIO_pop(abio);
BIO_puts(chio, "Connection 1: Sending out Data on initial connection\n");
fprintf(stderr, "Sent out data on connection 1\n");
/* Wait for another connection */
if(BIO_do_accept(abio) <= 0) {
fprintf(stderr, "Error accepting connection\n");
ERR_print_errors_fp(stderr);
exit(0);
}
fprintf(stderr, "Connection 2 established\n");
/* Close accept BIO to refuse further connections */
cbio2 = BIO_pop(abio);
BIO_free(abio);
BIO_puts(chio2, "Connection 2: Sending out Data on second\n");
fprintf(stderr, "Sent out data on connection 2\n");

BIO_puts(chio, "Connection 1: Second connection established\n");
/* Close the two established connections */

BIO_free(cbio);

BIO_free(chio2);

SEE ALSO

116

TBA

2002-12-12

BIO_s_accept(3)

0.9.7¢c

BIO_s bhio(3) OpenSSL BIO_s hio(3)

NAME

BIO_s bio, BIO_make_bio_pair, BIO_destroy_bio_pair, BIO_shutdown_wr, BIO_set write_buf_size,
BIO _get write_buf_size, BIO_new_bio_pair, BIO_get write_guarantee, BIO_ctrl_get write_guaran-
tee, BIO_get read_request, BIO_ctrl_get read_request, BIO_ctrl_reset_read_request — BIO pair BIO

SYNOPSIS

#include <openssl/bio.h>
BIO_METHOD *BIO_s_bio(void);

#define BIO_make_bio_pair(b1,b2) (int)BIO_ctrl(b1,BIO_C_MAKE_BIO_PAIR,0,b2)
#define BIO_destroy_bio_pair(b) (int)BIO_ctrl(b,BIO_C DESTROY_BIO_PAIR,0,NULL)

#define BIO_shutdown_wr(b) (int)BIO_ctrl(b, BIO_C _SHUTDOWN_WR, 0, NULL)

#define BIO_set_write_buf_size(b,size) (int)BIO_ctrl(b,BIO_C_SET WRITE_BUF_SIZE,size,NULL)
#define BIO_get write_buf_size(b,size) (size_t)BIO_ctrl(b,BIO_C _GET_WRITE_BUF_SIZE,size,NULL)

int BIO_new_bio_pair(BIO **biol, size_t writebufl, BIO **hio2, size_t writebuf2);

#define BIO_get write_guarantee(b) (int)BIO_ctrl(b,BIO_C_GET_WRITE_GUARANTEE,0,NULL)
size_t BIO_ctrl_get write_guarantee(BIO *b);

#define BIO_get read_request(b) (int)BIO_ctrl(b,BIO_C _GET_READ_REQUEST,0,NULL)
size_t BIO_ctrl_get read_request(BIO *b);

int BIO_ctrl_reset_read_request(BIO *b);

DESCRIPTION

0.9.7c

BIO_s bio()returns the method for BIO pair. A BIO pair is a pair of source/sink BIOs where data
written to either half of the pair is buffered and can be read from the other half. Both halves must usu-
ally by handled by the same application thread since no locking is done on the internal data structures.

SinceBIO chains typically end in a source/siBKO it is possible to make this one half oB& pair
and have all the data processed by the chain under application control.

One typical use oBIO pairs is to placadLS/SSLI/O under application control, this can be used when
the application wishes to use a non standard transpor&BSL or the normal socket routines are
inappropriate.

Calls toBIO_read()will read data from the buffer or request a retry if no data is available.
Calls toBIO_write()will place data in the buffer or request a retry if the buffer is full.

The standard callBIO_ctrl_pending(JandBIO_ctrl_wpending(an be used to determine the amount
of pending data in the read or write buffer.

BIO_reset(xlears any data in the write buffer.
BIO_make_bio_pair(joins two separate BIOs into a connected pair.

BIO_destroy_pair()Jdestroys the association between two connected BlOs. Freeing up any half of the
pair will automatically destroy the association.

BIO_shutdown_wr()s used to close down BIO b. After this call no further writes oBIO b are
allowed (they will return an error). Reads on the other half of the pair will return any pending data or
EOFwhen all pending data has been read.

BIO_set _write_buf size@ets the write buffer size &lO b to size. If the size is not initialized a
default value is used. This is currently 17K, sufficient for a maximunirs&eecord.

BIO _get_write_buf_size(eturns the size of the write buffer.

BIO_new_bio_pair() combines the calls to BIO _new() BIO _make bio pair() and
BIO_set_write_buf size{p create a connected pair of BI®i®1, bio2 with write buffer sizeswvrite-
bufl andwritebuf2. If either size is zero then the default size is usBO_new_bio_pair(does not
check whethebiol or bio2 do point to some othaslO, the values are overwritteBJO_free()is not
called.

BIO _get_write_guarantee@nd BIO_ctrl_get write_guaranteefeturn the maximum length of data
that can be currently written to tH®O. Writes larger than this value will return a value from

2002-12-12 117

BIO_s bhio(3) OpenSSL BIO_s hio(3)

BIO write() less than the amount requested or if the buffer is full request a retry.
BIO_ctrl_get write_guarantee($ a function whereaBIO_get_write_guarantee($ a macro.

BIO _get_read_requestgndBIO_ctrl_get read_requesteturn the amount of data requested, or the
buffer size if it is less, if the last read attempt at the other half dithepair failed due to an empty
buffer. This can be used to determine how much data should be writterBi®tke the next read will
succeed: this is most usefulinS/SSLapplications where the amount of data read is usually meaning-
ful rather than just a buffer size. After a successful read this call will return zero. It also will return
zero once new data has been written satisfying the read request or part of it. Note that
BIO _get_read_requestfjever returns an amount larger than that returneBIBy get write_guaran-

tee().

BIO_ctrl_reset_read_requestfpn also be used to reset the value returneBli®y get_read_request()
to zero.

NOTES

Both halves of aBIO pair should be freed. That is even if one half is implicit freed due to a
BIO free_all()or SSL_free(tall the other half needs to be freed.

When used in bidirectional applications (suchras/SSL) care should be taken to flush any data in the
write buffer. This can be done by calliBdO_pending(on the other half of the pair and, if any data is
pending, reading it and sending it to the underlying transport. This must be done before any normal
processing (such as callisglect()) due to a request aiglO_should_read(peing true.

To see why this is important consider a case where a request is serBl@ingite() and a response

read withBIO_read() this can occur during arLS/SSLhandshake for examplBlO_write() will suc-

ceed and place data in the write buflelO_read()will initially fail and BIO_should_read(Will be

true. If the application then waits for data to be available on the underlying transport before flushing the
write buffer it will never succeed because the request was never sent!

RETURN VALUES

BIO_new_bio_pair(yeturns 1 on success, with the new BIOs availablgda andbio2, or 0 on fail-
ure, withNULL pointers stored into the locations foiol andbio2. Check the error stack for more
information.

[XXXXX: More return values need to be added here]

EXAMPLE

118

TheBIO pair can be used to have full control over the network access of an application. The application
can callselect()on the socket as required without having to go through the SSL-interface.

BIO *internal_bio, *network_bio;
BIO_new_bio_pair(internal_bio, 0, network_bio, 0);

SSL_set_bio(ssl, internal_bio, internal_bio);
SSL_operations();

application 0 TLS-engine

O 0
R S— > SSL_operations()
a N i

O (m V
0 BIO-pair (internal_bio)

oo < BIO-pair (network_bio)
O O
socket O
SSL_free(ssl); [* implicitly frees internal_bio */

BIO_free(network_hio);

As theBIO pair will only buffer the data and never directly access the connection, it behaves non-
blocking and will return as soon as the write buffer is full or the read buffer is drained. Then the appli-
cation has to flush the write buffer and/or fill the read buffer.

2002-12-12 0.9.7c

BIO_s bhio(3) OpenSSL BIO_s hio(3)

Use theBIO_ctrl_pending(), to find out whether data is buffered ingh®& and must be transfered to
the network. UsaBlO_ctrl_get read_requestp find out, how many bytes must be written into the
buffer before th&sSL_operation(@an successfully be continued.

WARNING
As the data is buffere@§SL_operation(jnay return with &€RROR_SSL_WANT_READcondition, but
there is still data in the write buffer. An application must not rely on the error vasi8lofoperation()
but must assure that the write buffer is always flushed first. Otherwise a deadlock may occur as the peer
might be waiting for the data before being able to continue.

SEE ALSO
SSL_set hiB), ssl(3), bio(3), BIO_should_retry3), BIO_read(3)

0.9.7c 2002-12-12 119

BIO_s connect(3) OpenSSL BIO_s connect(3)

NAME

BIO_s_connect, BIO_set_conn_hostname, BIO_set_conn_port, BIO_set_conn_ip,
BIO_set_conn_int_port, BIO_get _conn_hostname, BIO_get_conn_port, BIO _get_conn_ip,
BIO_get_conn_int_port, BIO_set_nbio, BIO_do_connect — connect BIO

SYNOPSIS

#include <openssl/bio.h>
BIO_METHOD * BIO_s_connect(void);
BIO *BIO_new_connect(char *name);

long BIO_set_conn_hostname(BIO *b, char *name);
long BIO_set_conn_port(BIO *b, char *port);

long BIO_set_conn_ip(BIO *b, char *ip);

long BIO_set_conn_int_port(BIO *b, char *port);
char *BIO_get_conn_hostname(BIO *b);

char *BIO_get_conn_port(BIO *b);

char *BIO_get_conn_ip(BIO *b, dummy);

long BIO_get_conn_int_port(BIO *b, int port);

long BIO_set_nbio(BIO *b, long n);
int BIO_do_connect(BIO *b);

DESCRIPTION

120

BIO_s_connect(jeturns the conne® O method. This is a wrapper round the platforirP/IPsocket
connection routines.

Using connect BIOSTCP/IPconnections can be made and data transferred usin@mnkputines. In
this way any platform specific operations are hidden bgtbeabstraction.

Read and write operations on a conrg¢t will perform 1/0 on the underlying connection. If no con-
nection is established and the port and hostname (see below) is set up properly then a connection is
established first.

Connect BIOs suppoBIO_puts()but notBIO_gets()

If the close flag is set on a conn@&t® then any active connection is shutdown and the socket closed
when theBIO is freed.

Calling BIO_reset()on a connecBIO will close any active connection and reset B1© into a state
where it can connect to the same host again.

BIO _get_fd()places the underlying socket érif it is not NULL, it also returns the socket . dfis not
NULL it should be of type (int *).

BIO_set_conn_hostname(ses the stringhame to set the hosthame. The hostname can béPan
address. The hostname can also include the port in the form hostname:port . It is also acceptable to use
the form “hostname/any/other/path” or “hostname:port/any/other/path”.

BIO_set_conn_port@ets the port tport. port can be the numerical form or a string such as “http”. A
string will be looked up first usingetservbyname@n the host platform but if that fails a standard ta-
ble of port names will be used. Currently the list is http, telnet, socks, https, ssl, ftp, gopher and wais.

BIO_set_conn_ip(kets thelP address tdp using binary form, that is four bytes specifying ke
address in big-endian form.

BIO_set_conn_int_port@ets the port usingort. port should be of type (int *).

BIO_get_conn_hostname@turns the hostname of the connBid or NULL if the BIO is initialized
but no hostname is set. This return value is an internal pointer which should not be modified.

BIO_get_conn_port()eturns the port as a string.

BIO_get_conn_ip(Jeturns theP address in binary form.

BIO_get_conn_int_port{eturns the port as an int.

BIO_set_nbio(sets the non blocking 1/0O flag to If n is zero then blocking I/O is set.iifis 1 then

2000-10-20 0.9.7c

BIO_s connect(3) OpenSSL BIO_s connect(3)

non blocking I/O is set. Blocking I/O is the deft. The call tdBIO_set nbio(should be made before
the connection is established because non blocking I/O is set during the connect process.

BIO_new_connect(fombinesBIO_new()and BIO_set_conn_hostnameifjto a single call: that is it
creates a new conneglto with name.

BIO_do_connect(attempts to connect the suppliet. It returns 1 if the connection was established
successfully. A zero or negative value is returned if the connection could not be established, the call
BIO_should_retry(should be used for non blocking connect BIOs to determine if the call should be
retried.

NOTES
If blocking 1/O is set then a non positive return value from any 1/O call is caused by an error condition,
although a zero return will normally mean that the connection was closed.

If the port name is supplied as part of the host name then this will override any value set with
BIO_set_conn_port()This may be undesirable if the application does not wish to allow connection to
arbitrary ports. This can be avoided by checking for the presence of the "’ character in the passed host-
name and either indicating an error or truncating the string at that point.

The values returned bBIO_get_conn_hostname(BIO_get_conn_port() BIO_get_conn_ip()and
BIO _get_conn_int_port(are updated when a connection attempt is made. Before any connection
attempt the values returned are those set by the application itself.

Applications do not have to calllO_do_connect(put may wish to do so to separate the connection
process from other I/O processing.

If non blocking I/O is set then retries will be requested as appropriate.

It addition toBIO_should read(and BIO_should_write()it is also possible foBIO_should_io_spe-

cial() to be true during the initial connection process with the re8$0nRR_CONNECT If this is
returned then this is an indication that a connection attempt would block, the application should then
take appropriate action to wait until the underlying socket has connected and retry the call.

BIO_set_conn_hostname() BIO_set_conn_port() BIO_set_conn_ip() BIO_set_conn_int_port(),
BIO_get_conn_hostname() BIO_get_conn_port() BIO_get_conn_ip() BIO_get_conn_int_port(),
BIO_set_nbio(andBIO_do_connect(@re macros.

RETURN VALUES
BIO_s_connect(jeturns the conne& O method.

BIO_get_fd(xeturns the socket or -1 if tiBO has not been initialized.

BIO_set_conn_hostname(BIO_set_conn_port()BIO_set_conn_ip()and BIO_set_conn_int_port()
always return 1.

BIO_get_conn_hostname@turns the connected hosthameloLL is none was set.
BIO_get_conn_port(leturns a string representing the connected paottiat if not set.
BIO_get_conn_ip(Jeturns a pointer to the connectedddress in binary form or all zeros if not set.
BIO_get_conn_int_port{eturns the connected port or O if none was set.

BIO_set_nbio(plways returns 1.

BIO_do_connect(jeturns 1 if the connection was successfully established and 0 or -1 if the connec-
tion failed.

EXAMPLE
This is example connects to a webserver on the local host and attempts to retrieve a page and copy the
result to standard output.

0.9.7c 2000-10-20 121

BIO_s connect(3) OpenSSL

BIO *cbio, *out;
int len;
char tmpbuf[1024];
ERR_load_crypto_strings();
cbio = BIO_new_connect("localhost:http");
out = BIO_new_fp(stdout, BIO_NOCLOSE);
if(BIO_do_connect(chio) <= 0) {
fprintf(stderr, "Error connecting to server\n™);
ERR_print_errors_fp(stderr);
/* whatever ... */
}
BIO_puts(chio, "GET / HTTP/1.0\n\n");
for(;;) {
len = BIO_read(cbio, tmpbuf, 1024);
if(len <= 0) break;
BIO_write(out, tmpbuf, len);
}
BIO_free(chio);
BIO_free(out);

SEE ALSO

122

TBA

2000-10-20

BIO_s connect(3)

0.9.7¢c

BIO_s fd(3) OpenSSL BIO_s fd(3)

NAME

BIO_s fd, BIO_set fd, BIO_get fd, BIO_new_fd - file descriptor BIO

SYNOPSIS

#include <openssl/bio.h>
BIO_METHOD * BIO_s_fd(void);

#define BIO_set_fd(b,fd,c) BIO_int_ctrl(b,BIO_C_SET_ FD,c,fd)
#define BIO_get fd(b,c) BIO_ctrl(b,BIO_C_GET_FD,0,(char *)c)

BIO *BIO_new_fd(int fd, int close_flag);

DESCRIPTION

BIO_s fd()returns the file descript@®O method. This is a wrapper round the platforms file descriptor
routines such agad()andwrite().

BIO_read() and BIO_write() read or write the underlying descriptoBIO_puts()is supported but
BIO_gets()is not.

If the close flag is set then thelose()is called on the underlying file descriptor whengihe is freed.
BIO_reset()attempts to change the file pointer to the start of file using Iseek(fd, 0, 0).
BIO_seek(pets the file pointer to positiaris from start of file using Iseek(fd, ofs, 0).

BIO _tell() returns the current file position by calling Iseek(fd, 0, 1).

BIO_set_fd(pets the file descriptor &i0 b to fd and the close flag to

BIO_get_fd()places the file descriptor oif it is not NULL, it also returns the file descriptor.dfis not
NULL it should be of type (int *).

BIO_new_fd(returns a file descript@®10 usingfd andclose_flag

NOTES

The behaviour oBIO_read()and BIO_write() depends on the behavior of the platfomaad() and
write() calls on the descriptor. If the underlying file descriptor is in a non blocking mode thBrothe
will behave in the manner described in BI® read(3) andBIO_should_retry3) manual pages.

File descriptor BIOs should not be used for socket 1/0. Use socket BIOs instead.

RETURN VALUES

BIO_s fd()returns the file descript@&O method.

BIO_reset(returns zero for success and —1 if an error occurBd@. seek(rndBIO _tell() return the
current file position or —1 is an error occurred. These values reflect the undesdgh@behaviour.

BIO_set_fd(lways returns 1.
BIO_get_fd(xeturns the file descriptor or -1 if tB¢O has not been initialized.
BIO_new_fd(returns the newly allocate®lO or NULL is an error occurred.

EXAMPLE

This is a file descriptd®lO version of “Hello World”:

BIO *out;

out = BIO_new_fd(fileno(stdout), BIO_NOCLOSE);
BIO_printf(out, "Hello World\n");

BIO_free(out);

SEE ALSO

0.9.7c

BIO_seek3), BIO tell(3), BIO_rese(3), BIO_read(3), BIO_write(3), BIO_putq3), BIO_getg3),
BIO_printf(3), BIO_set_clos€3), BIO_get_closé€3)

2000-09-17 123

BIO_s file(3) OpenSSL BIO_s file(3)

NAME
BIO_s file, BIO_new_ file, BIO _new fp, BIO set fp, BIO get fp, BIO_read filename,
BIO_write_filename, BIO_append_filename, BIO_rw_filename - FILE bio

SYNOPSIS
#include <openssl/bio.h>
BIO_METHOD * BIO_s file(void);
BIO *BIO_new_file(const char *filename, const char *mode);
BIO *BIO_new_fp(FILE *stream, int flags);
BIO_set fp(BIO *b,FILE *fp, int flags);
BIO _get fp(BIO *b,FILE **fpp);

int BIO_read_filename(BIO *b, char *name)
int BIO_write_filename(BIO *b, char *name)
int BIO_append_filename(BIO *b, char *name)
int BIO_rw_filename(BIO *b, char *name)

DESCRIPTION
BIO_s file(returns theBIO file method. As its name implies it is a wrapper round the stdie struc-
ture and it is a source/siBtO.

Calls toBIO_read()and BIO_write() read and write data to the underlying stre®O_gets()and
BIO_puts()are supported on file BIOs.

BIO_flush()on a fileBIO calls thefflush()function on the wrapped stream.
BIO_reset()attempts to change the file pointer to the start of file using fseek(stream, 0, 0).
BIO_seek(pets the file pointer to positiaris from start of file using fseek(stream, ofs, 0).
BIO_eof()callsfeof().

Setting theBIO_CLOSEflag callsfclose()on the stream when tl®O is freed.

BIO_new_file()creates a new filBlO with modemode the meaning ofmodeis the same as the stdio
functionfopen(). TheBIO_CLOSEflag is set on the return@&io.

BIO_new_fp()creates a fileBIO wrapping stream. Flags can beBIO_CLOSE BIO_NOCLOSE (the
close flag)BIO_FP_TEXT(sets the underlying stream to text mode, default is binary: this only has any
effect under Win32).

BIO_set fp()set the fp of a fileBIO to fp. flags has the same meaning asBIiO_new_fp()it is a
macro.

BIO_get_fp(xetrieves the fp of a filglO, it is a macro.
BIO_seek()s a macro that sets the position pointenffsetbytes from the start of file.
BIO _tell() returns the value of the position pointer.

BIO_read_filename()BIO_write_filename()BIO_append_filename@nd BIO_rw_filename()set the
file BIO b to use filenamefor reading, writing, append or read write respectively.

NOTES
When wrapping stdout, stdin or stderr the underlying stream should not normally be closed so the
BIO_NOCLOSEflag should be set.

Because the filglO calls the underlying stdio functions any quirks in stdio behaviour will be mirrored
by the correspondingIiO.

EXAMPLES
File BIO “hello world™:

BIO *bio_out;
bio_out = BIO_new_fp(stdout, BIO_NOCLOSE);
BIO_printf(bio_out, "Hello World\n");

Alternative technique:

124 2000-09-19 0.9.7c

BIO_s file(3) OpenSSL BIO_s file(3)

BIO *bio_out;

bio_out = BIO_new(BIO_s_file());

if(bio_out == NULL) /* Error ... */

if(!BIO_set_fp(bio_out, stdout, BIO_NOCLOSE)) /* Error ... */
BIO_printf(bio_out, "Hello World\n");

Write to a file:

BIO *out;

out = BIO_new_file("filename.txt", "w");
if(lout) /* Error occurred */
BIO_printf(out, "Hello World\n");
BIO_free(out);

Alternative technique:

BIO *out;

out = BIO_new(BIO_s_file());

iflout == NULL) /* Error ... */
if(!BIO_write_filename(out, “filename.txt")) /* Error ... */
BIO_printf(out, "Hello World\n");

BIO_free(out);

RETURN VALUES
BIO_s file(returns the file8IO method.

BIO_new_file(JandBIO_new_fp(return a fileBIO or NULL if an error occurred.

BIO_set fp(JandBIO_get fp(return 1 for success or O for failure (although the current implementa-
tion never return 0).

BIO_seek(yeturns the same value as the underlygggk(function: 0 for success or -1 for failure.
BIO _tell() returns the current file position.

BIO_read_filename(BIO_write_filename(),BIO_append_filename@ndBIO_rw_filename(yeturn 1
for success or 0 for failure.

BUGS
BIO_reset()andBIO_seek(are implemented usinigeek()on the underlying stream. The return value
for fseek()is O for success or -1 if an error occurred this differs from other tyf@©afhich will typ-
ically return 1 for success and a non positive value if an error occurred.

SEE ALSO
BIO_seek3), BIO_tell(3), BIO_rese(3), BIO_flush(3), BIO read(3), BIO_write(3), BIO_putg3),
BIO_getq3), BIO_printf(3), BIO_set clos€3), BIO_get closé3)

0.9.7c 2000-09-19 125

BIO_s mem(3) OpenSSL BIO_s mem(3)

NAME

BIO_s mem, BIO_set_ mem_eof return, BIO_get mem_data, BIO_set_ mem_buf, BIO_get mem_ptr,
BIO_new_mem_buf — memory BIO

SYNOPSIS

#include <openssl/bio.h>
BIO_METHOD * BIO_s_mem(void);

BIO_set_mem_eof return(BIO *b,int v)

long BIO_get_mem_data(BIO *b, char **pp)
BIO_set_mem_buf(BIO *b,BUF_MEM *bm,int c)
BIO_get_ mem_ptr(BIO *b,BUF_MEM **pp)

BIO *BIO_new_mem_buf(void *buf, int len);

DESCRIPTION

BIO_s_mem(jeturn the memorplO method function.

A memoryBIO is a source/sinBIO which uses memory for its /0. Data written to a menRIy is
stored in 8BUF_MEM structure which is extended as appropriate to accommodate the stored data.

Any data written to a memomIO can be recalled by reading from it. Unless the merBodyis read
only any data read from it is deleted from B1©.

Memory BIOs suppoBIO_gets(andBIO_puts().

If the BIO_CLOSEflag is set when a memoBJO is freed then the underlyirBUF_MEM structure is
also freed.

Calling BIO_reset()on a read write memoiiO clears any data in it. On a read oBIp it restores the
BIO to its original state and the read only data can be read again.

BIO_eof()is true if no data is in thelO.
BIO_ctrl_pending(yeturns the number of bytes currently stored.

BIO_set_mem_eof_returrggts the behaviour of memaByO b when it is empty. If ther is zero then
an empty memorgIO will return EOF (that is it will return zero and BIO_should_retry(b) will be false.
If v is non zero then it will returiv when it is empty and it will set the read retry flag (that is
BIO_read_retry(b) is true). To avoid ambiguity with a normal positive return vadheuld be set to a
negative value, typically 1.

BIO_get_mem_data@etspp to a pointer to the start of the memory BIOs data and returns the total
amount of data available. It is implemented as a macro.

BIO_set_mem_buf@ets the internaBUF_MEM structure tobm and sets the close flag ¢pthat isc
should be eitheBIO_CLOSEor BIO_NOCLOSE It is a macro.

BIO_get_mem_ptr@laces the underlyingUF_MEM structure irpp. It is a macro.

BIO_new_mem_buf@reates a memorlO usinglen bytes of data abuf, if lenis —1 then thdouf is

assumed to be null terminated and its length is determinsttlbg. TheBIO is set to a read only state

and as a result cannot be written to. This is useful when some data needs to be made available from a
static area of memory in the form oB#. The supplied data is read directly from the supplied buffer:

it is not copied first, so the supplied area of memory must be unchanged ustibtisefreed.

NOTES

BUGS

126

Writes to memory BIOs will always succeed if memory is available: that is their size can grow indefi-
nitely.

Every read from a read write memaio will remove the data just read with an internal copy opera-
tion, if aBIO contains a lots of data and it is read in small chunks the operation can be very slow. The
use of a read only memoBtO avoids this problem. If thBIO must be read write then adding a buffer-

ing BIO to the chain will speed up the process.

There should be an option to set the maximum size of a mes@ry
There should be a way to “rewind” a read wriggO without destroying its contents.

2000-09-16 0.9.7c

BIO_s mem(3) OpenSSL BIO_s mem(3)

The copying operation should not occur after every small read of a BE@& improve efficiency.

EXAMPLE
Create a memorglO and write some data to it:

BIO *mem = BIO_new(BIO_s_mem());
BIO_puts(mem, "Hello World\n");

Create a read only memagyo:

char data[] = "Hello World";
BIO *mem;
mem = BIO_new_mem_buf(data, -1);
Extract theBUF_MEM structure from a memoriO and then free up th&O:
BUF_MEM *bptr;
BIO_get_mem_ptr(mem, &bptr);

BIO_set_close(mem, BIO_NOCLOSE); /* So BIO_free() leaves BUF_MEM alone */
BIO_free(mem);

SEE ALSO
TBA

0.9.7c 2000-09-16 127

BIO_s null(3) OpenSSL BIO_s null(3)

NAME
BIO_s_null — null data sink
SYNOPSIS
#include <openssl/bio.h>
BIO_METHOD * BIO_s_null(void);
DESCRIPTION
BIO_s_null()returns the null sinlBIO method. Data written to the null sink is discarded, reads return
EOF
NOTES

A null sink BIO behaves in a similar manner to the Unix /dev/null device.
A null bio can be placed on the end of a chain to discard any data passed through it.

A null sink is useful if, for example, an application wishes to digest some data by writing through a
digest bio but not send the digested data anywhere. Simt® &hain must normally include a
source/sinkBIO this can be achieved by adding a null s to the end of the chain

RETURN VALUES
BIO_s_null()returns the null sinBIO method.

SEE ALSO
TBA

128 2000-09-14 0.9.7c

BIO_s socket(3) OpenSSL BIO_s socket(3)

NAME
BIO_s socket, BIO _new_socket — socket BIO

SYNOPSIS
#include <openssl/bio.h>

BIO_METHOD *BIO_s_socket(void);

long BIO_set_fd(BIO *b, int fd, long close_flag);
long BIO_get_fd(BIO *b, int *c);

BIO *BIO_new_socket(int sock, int close_flag);

DESCRIPTION
BIO_s socket(jeturns the sock&lO method. This is a wrapper round the platform’s socket routines.

BIO_read() and BIO_write() read or write the underlying sockeBIO puts() is supported but
BIO_gets()is not.

If the close flag is set then the socket is shut down and closed wiap tisereed.
BIO_set_fd(pets the socket &0 b to fd and the close flag tose_flag

BIO_get_fd()places the socket ia if it is not NULL, it also returns the socket. ¢fis not NULL it
should be of type (int *).

BIO_new_socketfeturns a socke&lO usingsockandclose_flag

NOTES
Socket BIOs also support any relevant functionality of file descriptor BIOs.

The reason for having separate file descriptor and socket BIOs is that on some platforms sockets are not
file descriptors and use distinct I/O routines, Windows is one such platform. Any code mixing the two
will not work on all platforms.

BIO_set fd(andBIO_get fd(Jare macros.

RETURN VALUES
BIO_s_socket(jeturns the sock&lO method.

BIO_set_fd(lways returns 1.
BIO_get_fd(xeturns the socket or -1 if tiBO has not been initialized.
BIO_new_socketfeturns the newly allocate®lO or NULL is an error occurred.

SEE ALSO
TBA

0.9.7c 2000-10-20 129

BIO_set_callback(3) OpenSSL BIO_set callback(3)

NAME
BIO_set_callback, BIO_get callback, BIO_set_callback_arg, BIO_get callback_arg, BIO_debug_call-
back — BIO callback functions

SYNOPSIS
#include <openssl/bio.h>
#define BIO_set_callback(b,cb) ((b)->callback=(cb))
#define BIO_get_callback(b) ((b)->callback)
#define BIO_set_callback arg(b,arg) ((b)->cb_arg=(char *)(arg))
#define BIO_get_callback_arg(b) ((b)->cb_arg)

long BIO_debug_callback(BIO *bio,int cmd,const char *argp,int argi,
long argl,long ret);

typedef long callback(BIO *b, int oper, const char *argp,
int argi, long argl, long retvalue);

DESCRIPTION
BIO_set_callback(and BIO_get_callback(set and retrieve thBlO callback, they are both macros.
The callback is called during most high legé&D operations. It can be used for debugging purposes to
trace operations on&O or to modify its operation.

BIO_set_callback arg@ndBIO_get callback arg(®re macros which can be used to set and retrieve
an argument for use in the callback.

BIO_debug_callback()s a standard debugging callback which prints out information relating to each
BIO operation. If the callback argument is set if is interpretedBa® o send the information to, other-
wise stderr is used.

callback()is the callback function itself. The meaning of each argument is described below.
TheBIO the callback is attached to is passel.in

oper is set to the operation being performed. For some operations the callback is called twice, once
before and once after the actual operation, the latter caspdiasr’ed withBIO_CB_RETURN

The meaning of the argumeratgyp, argi andargl depends on the value oper, that is the operation
being performed.

retvalue is the return value that would be returned to the application if no callback were present. The
actual value returned is the return value of the callback itself. In the case of callbacks called before the
actualBIO operation 1 is placed in retvalue, if the return value is not positive it will be immediately
returned to the application and B operation will not be performed.

The callback should normally simply retutvalue when it has finished processing, unless if specifi-
cally wishes to modify the value returned to the application.

CALLBACK OPERATIONS
BIO_free(b)
callback(b,BIO_CB_FREE NULL, OL, OL, 1L) is called before the free operation.

BIO_read(b, out, outl)
callback(b, BIO_CB_READ out, outl, OL, 1L) is called before the read and callback(b,
BIO_CB_READBIO_CB_RETURN, out, outl, OL, retvalue) after.

BIO_write(b, in, inl)
callback(b, BIO_CB_WRITE, in, inl, OL, 1L) is called before the write and callback(b,
BIO_CB_WRITEBIO_CB_RETURN, in, inl, OL, retvalue) after.

BIO_gets(b, out, outl)
callback(b, BIO_CB_GETS out, outl, OL, 1L) is called before the operation and callback(b,
BIO_CB_GETIBIO_CB_RETURN, out, outl, OL, retvalue) after.

BIO_puts(b, in)
callback(b, BIO_CB_WRITE, in, 0, OL, 1L) is called before the operation and callback(b,
BIO_CB_WRITHEBIO_CB_RETURN, in, 0, OL, retvalue) after.

130 2000-09-14 0.9.7c

BIO_set_callback(3) OpenSSL BIO_set callback(3)

BIO_ctrl(BIO *b, int cmd, long larg, void *parg)
callback(b,BIO_CB_CTRL,parg,cmd,larg,1L) is called before the call and call-
back(b,BIO_CB_CTRLBIO_CB_RETURN,parg,cmd, larg,ret) after.

EXAMPLE
TheBIO_debug_callback(unction is a good example, its source is in crypto/bio/bio_cb.c

SEE ALSO
TBA

0.9.7c 2000-09-14 131

BIO_should_retry(3) OpenSSL BIO_should_retry(3)

NAME

BIO_should_retry, BIO_should read, BIO_should_write, BIO_should io_special, BIO_retry type,
BIO_should_retry, BIO_get_retry BIO, BIO_get _retry reason — BIO retry functions

SYNOPSIS

#include <openssl/bio.h>

#define BIO_should_read(a) ((a)->flags & BIO_FLAGS_READ)

#define BIO_should_write(a) ((a)->flags & BIO_FLAGS_WRITE)

#define BIO_should_io_special(a) ((a)->flags & BIO_FLAGS_|I0_SPECIAL)
#define BIO_retry type(a) ((a)->flags & BIO_FLAGS_RWS)

#define BIO_should_retry(a) ((a)->flags & BIO_FLAGS _SHOULD_RETRY)
#define BIO_FLAGS_READ 0x01

#define BIO_FLAGS_WRITE 0x02

#define BIO_FLAGS_|O_SPECIAL 0x04
#define BIO_FLAGS_RWS (BIO_FLAGS_READ [BIO_FLAGS_WRITEBIO_FLAGS_IO_SPECIAL)
#define BIO_FLAGS_SHOULD_RETRY 0x08

BIO* BIO_get retry BIO(BIO *bio, int *reason);
int BIO_get_retry reason(BIO *bio);

DESCRIPTION

These functions determine whyB#O is not able to read or write data. They will typically be called
after a failedBIO_read()or BIO_write() call.

BIO_should_retry()s true if the call that produced this condition should then be retried at a later time.
If BIO_should_retry(Js false then the cause is an error condition.

BIO_should_read(js true if the cause of the condition is th&l@ needs to read data.
BIO_should_write(Js true if the cause of the condition is th&tl@ needs to read data.

BIO_should _io_special(}s true if some “special” condition, that is a reason other than reading or
writing is the cause of the condition.

BIO_get_retry_reason(yeturns a mask of the cause of a retry condition consisting of the values
BIO_FLAGS_READ, BIO_FLAGS_WRITE, BIO_FLAGS_IO_SPECIAL though currenBIO types will
only set one of these.

BIO_get_retry BIO()determines the precise reason for the special condition, it returr@ahiat
caused this condition andréasonis notNULL it contains the reason code. The meaning of the reason
code and the action that should be taken depends on the §jaetbht resulted in this condition.

BIO_get_retry_reason@eturns the reason for a special condition if passed the relevarfior exam-
ple as returned bBIO_get retry BIO()

NOTES

132

If BIO_should_retry(returns false then the precise “error condition” depends orBtbetype that
caused it and the return code of B1© operation. For example if a call BIO_read()on a sockeBIO
returns 0 andBIO_should_retry()s false then the cause will be that the connection closed. A similar
condition on a fileBIO will mean that it has reach&bDF. SomeBIO types may place additional infor-
mation on the error queue. For more details see the indiviiiDdl/pe manual pages.

If the underlying 1/O structure is in a blocking mode almost all cuBébttypes will not request a
retry, because the underlying 1/O calls will not. If the application knows thazithéype will never
signal a retry then it need not cBIO_should_retry(gfter a failedBIO I/O call. This is typically done
with file BIOs.

SSLBIOs are the only current exception to this rule: they can request a retry even if the underlying 1/0
structure is blocking, if a handshake occurs during a call@® read(). An application can retry the
failed call immediately or avoid this situation by settBfl._MODE_AUTO_RETRYon the underlying
SSLstructure.

While an application may retry a failed non blocking call immediately this is likely to be very ineffi-
cient because the call will fail repeatedly until data can be processed or is available. An application will

2000-09-16 0.9.7c

BIO_should_retry(3) OpenSSL BIO_should_retry(3)

BUGS

normally wait until the necessary condition is satisfied. How this is done depends on the underlying 1/0
structure.

For example if the cause is ultimately a socketBi@ should_read(js true then a call teelect()may

be made to wait until data is available and then retngtbeoperation. By combining the retry condi-
tions of several non blocking BIOs in a singldect()call it is possible to service several BIOs in a sin-
gle thread, though the performance may be pa®8ifBIOs are present because long delays can occur
during the initial handshake process.

It is possible for @10 to block indefinitely if the underlying I/O structure cannot process or return any
data. This depends on the behaviour of the platforms 1/O functions. This is often not desirable: one
solution is to use non blocking 1/0 and use a timeout osdhext()(or equivalent) call.

The OpenSSIASN1 functions cannot gracefully deal with non blocking I/O: that is they cannot retry
after a partial read or write. This is usually worked around by only passing the relevant Alsitd to
functions when the entire structure can be read or written.

SEE ALSO

0.9.7c

TBA

2000-09-16 133

blowfish(3) OpenSSL blowfish(3)

NAME

blowfish, BF_set_key, BF_encrypt, BF_decrypt, BF_ecb_encrypt, BF_cbc_encrypt, BF_cfb64 _encrypt,
BF_ofb64_encrypt, BF_options — Blowfish encryption

SYNOPSIS

#include <openssl/blowfish.h>
void BF_set_key(BF_KEY *key, int len, const unsigned char *data);

void BF_ecb_encrypt(const unsigned char *in, unsigned char *out,
BF_KEY *key, int enc);
void BF_cbc_encrypt(const unsigned char *in, unsigned char *out,
long length, BF_KEY *schedule, unsigned char *ivec, int enc);
void BF_cfh64_encrypt(const unsigned char *in, unsigned char *out,
long length, BF_KEY *schedule, unsigned char *ivec, int *num,
int enc);
void BF_ofb64 _encrypt(const unsigned char *in, unsigned char *out,
long length, BF_KEY *schedule, unsigned char *ivec, int *num);
const char *BF_options(void);

void BF_encrypt(BF_LONG *data,const BF_KEY *key);
void BF_decrypt(BF_LONG *data,const BF_KEY *key);

DESCRIPTION

134

This library implements the Blowfish cipher, which was invented and described by Counterpane (see
http://www.counterpane.com/blowfish.html).

Blowfish is a block cipher that operates on 64 bit (8 byte) blocks of data. It uses a variable size key, but
typically, 128 bit (16 byte) keys are a considered good for strong encryption. Blowfish can be used in
the same modes &8&S (seedes_mode&)). Blowfish is currently one of the faster block ciphers. Itis
quite a bit faster thabES, and much faster thdBEA or RC2

Blowfish consists of a key setup phase and the actual encryption or decryption phase.
BF_set _key(¥ets up th&F_KEY key using thden bytes long key atlata.

BF_ecb_encrypt(s the basic Blowfish encryption and decryption function. It encrypts or decrypts the
first 64 bits of in using the keykey, putting the result inout. enc decides if encryption
(BF_ENCRYPT) or decryption BF_DECRYPT) shall be performed. The vector pointed atilyand

out must be 64 bits in length, no less. If they are larger, everything after the first 64 bits is ignored.

The mode function8F_cbc_encrypt()BF_cfb64_encrypt(and BF_ofb64_encrypt(all operate on
variable length data. They all take an initialization vedtec which needs to be passed along into the
next call of the same function for the same messag® may be initialized with anything, but the
recipient needs to know what it was initialized with, or it won’t be able to decrypt. Some programs and
protocols simplify this, likeSSH whereivec is simply initialized to zero.BF_chc_encrypt(pperates

on data that is a multiple of 8 bytes long, wilé_cfb64 encrypt(@ndBF_ofb64 encrypt(are used

to encrypt an variable number of bytes (the amount does not have to be an exact multiple of 8). The
purpose of the latter two is to simulate stream ciphers, and therefore, they need the pawameter
which is a pointer to an integer where the current offséteiais stored between calls. This integer
must be initialized to zero whévecis initialized.

BF_cbc_encrypt()s the Cipher Block Chaining function for Blowfish. It encrypts or decrypts the 64
bits chunks ofin using the keyschedule, putting the result iout. enc decides if encryption
(BF_ENCRYPT) or decryption BF_DECRYPT shall be performedivec must point at an 8 byte long
initialization vector.

BF_cfb64 encrypt()s the CFB mode for Blowfish with 64 bit feedback. It encrypts or decrypts the
bytes inin using the keyschedule, putting the result wmut. encdecides if encryptionBF_ENCRYPT)

or decryption BF_DECRYPT) shall be performedivec must point at an 8 byte long initialization vec-
tor. num must point at an integer which must be initially zero.

BF_ofb64_encrypt(js theOFB mode for Blowfish with 64 bit feedback. It uses the same parameters
asBF_cfb64_encrypt(), which must be initialized the same way.

BF_encrypt() and BF_decrypt() are the lowest level functions for Blowfish encryption. They

2002-01-21 0.9.7c

blowfish(3) OpenSSL blowfish(3)

encrypt/decrypt the first 64 bits of thector pointed bydata, using the keykey. These functions
should not be used unless you implement 'modes’ of Blowfish. The alternative is to use
BF_ecb_encrypt(). If you still want to use these functions, you should be aware that they take each
32-hit chunk in host-byte order, which is little-endian on little-endian platforms and big-endian on big-
endian ones.

RETURN VALUES
None of the functions presented here return any value.

NOTE
Applications should use the higher level functi@&”_EncryptIni(3) etc. instead of calling the blow-
fish functions directly.

SEE ALSO
des_modef)

HISTORY
The Blowfish functions are available in all versions of SSLeay and OpenSSL.

0.9.7c 2002-01-21 135

bn(3) OpenSSL bn(3)

NAME
bn — multiprecision integer arithmetics

SYNOPSIS
#include <openssl/bn.h>

BIGNUM *BN_new(void);

void BN_free(BIGNUM *a);

void BN_init(BIGNUM *);

void BN_clear(BIGNUM *a);

void BN_clear_free(BIGNUM *a);

BN_CTX *BN_CTX_new(void);
void BN_CTX _init(BN_CTX *c);
void BN_CTX_ free(BN_CTX *c);

BIGNUM *BN_copy(BIGNUM *a, const BIGNUM *b);
BIGNUM *BN_dup(const BIGNUM *a);

BIGNUM *BN_swap(BIGNUM *a, BIGNUM *b);

int BN_num_bytes(const BIGNUM *a);
int BN_num_bits(const BIGNUM *a);
int BN_num_bits_word(BN_ULONG w);

int BN_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b);

int BN_sub(BIGNUM *r, const BIGNUM *a, const BIGNUM *b);

int BN_mul(BIGNUM *r, BIGNUM *a, BIGNUM *b, BN_CTX *ctx);

int BN_sqr(BIGNUM *r, BIGNUM *a, BN_CTX *ctx);

int BN_div(BIGNUM *dv, BIGNUM *rem, const BIGNUM *a, const BIGNUM *d,
BN_CTX *ctx);

int BN_mod(BIGNUM *rem, const BIGNUM *a, const BIGNUM *m, BN_CTX *ctx);

int BN_nnmod(BIGNUM *rem, const BIGNUM *a, const BIGNUM *m, BN_CTX *ctx);

int BN_mod_add(BIGNUM *ret, BIGNUM *a, BIGNUM *b, const BIGNUM *m,
BN_CTX *ctx);

int BN_mod_sub(BIGNUM *ret, BIGNUM *a, BIGNUM *b, const BIGNUM *m,
BN_CTX *ctx);

int BN_mod_mul(BIGNUM *ret, BIGNUM *a, BIGNUM *b, const BIGNUM *m,
BN_CTX *ctx);

int BN_mod_sqr(BIGNUM *ret, BIGNUM *a, const BIGNUM *m, BN_CTX *ctx);

int BN_exp(BIGNUM *r, BIGNUM *a, BIGNUM *p, BN_CTX *ctx);

int BN_mod_exp(BIGNUM *r, BIGNUM *a, const BIGNUM *p,
const BIGNUM *m, BN_CTX *ctx);

int BN_gcd(BIGNUM *r, BIGNUM *a, BIGNUM *b, BN_CTX *ctx);

int BN_add_word(BIGNUM *a, BN_ULONG w);

int BN_sub_word(BIGNUM *a, BN_ULONG w);

int BN_mul_word(BIGNUM *a, BN_ULONG w);

BN_ULONG BN_div_word(BIGNUM *a, BN_ULONG wy);
BN_ULONG BN_mod_word(const BIGNUM *a, BN_ULONG w);

int BN_cmp(BIGNUM *a, BIGNUM *b);

int BN_ucmp(BIGNUM *a, BIGNUM *b);

int BN _is_zero(BIGNUM *a);

int BN_is_one(BIGNUM *a);

int BN_is_word(BIGNUM *a, BN_ULONG w);
int BN_is_odd(BIGNUM *a);

136 2001-09-03 0.9.7c

bn(3)

OpenSSL bn(3)

int BN_zero(BIGNUM *a);

int BN_one(BIGNUM *a);

const BIGNUM *BN_value_one(void);

int BN_set_word(BIGNUM *a, unsigned long w);
unsigned long BN_get word(BIGNUM *a);

int BN_rand(BIGNUM *rnd, int bits, int top, int bottom);

int BN_pseudo_rand(BIGNUM *rnd, int bits, int top, int bottom);
int BN_rand_range(BIGNUM *rnd, BIGNUM *range);

int BN_pseudo_rand_range(BIGNUM *rnd, BIGNUM *range);

BIGNUM *BN_generate_prime(BIGNUM *ret, int bits,int safe, BIGNUM *add,
BIGNUM *rem, void (*callback)(int, int, void *), void *cb_arg);

int BN _is_prime(const BIGNUM *p, int nchecks,
void (*callback)(int, int, void *), BN_CTX *ctx, void *cb_arg);

int BN_set_bit(BIGNUM *a, int n);

int BN_clear_bit(BIGNUM *a, int n);

int BN _is_bit_set(const BIGNUM *a, int n);

int BN_mask_bits(BIGNUM *a, int n);

int BN_Ishift(BIGNUM *r, const BIGNUM *a, int n);
int BN_Ishift1(BIGNUM *r, BIGNUM *a);

int BN_rshift(BIGNUM *r, BIGNUM *a, int n);

int BN_rshiftL(BIGNUM *r, BIGNUM *a);

int BN_bn2bin(const BIGNUM *a, unsigned char *to);

BIGNUM *BN_hbin2bn(const unsigned char *s, int len, BIGNUM *ret);
char *BN_bn2hex(const BIGNUM *a);

char *BN_bn2dec(const BIGNUM *a);

int BN_hex2bn(BIGNUM **a, const char *str);

int BN_dec2bn(BIGNUM **a, const char *str);

int BN_print(BIO *fp, const BIGNUM *a);

int BN_print_fp(FILE *fp, const BIGNUM *a);

int BN_bn2mpi(const BIGNUM *a, unsigned char *to);

BIGNUM *BN_mpi2bn(unsigned char *s, int len, BIGNUM *ret);

BIGNUM *BN_mod_inverse(BIGNUM *r, BIGNUM *a, const BIGNUM *n,
BN_CTX *ctx);

BN_RECP_CTX *BN_RECP_CTX_new(void);

void BN_RECP_CTX_init(BN_RECP_CTX *recp);

void BN_RECP_CTX_ free(BN_RECP_CTX *recp);

int BN_RECP_CTX_set(BN_RECP_CTX *recp, const BIGNUM *m, BN_CTX *ctx);

int BN_mod_mul_reciprocal(BIGNUM *r, BIGNUM *a, BIGNUM *b,
BN_RECP_CTX *recp, BN_CTX *ctx);

BN_MONT_CTX *BN_MONT_CTX_new(void);

void BN_MONT_CTX_init(BN_MONT_CTX *ctx);

void BN_MONT_CTX free(BN_MONT_CTX *mont);

int BN_MONT_CTX_ set(BN_MONT_CTX *mont, const BIGNUM *m, BN_CTX *ctx);

BN_MONT_CTX *BN_MONT_CTX_copy(BN_MONT_CTX *to, BN_MONT_CTX *from);

int BN_mod_mul_montgomery(BIGNUM *r, BIGNUM *a, BIGNUM *b,
BN_MONT_CTX *mont, BN_CTX *ctx);

int BN_from_montgomery(BIGNUM *r, BIGNUM *a, BN_MONT_CTX *mont,
BN_CTX *ctx);

int BN_to_montgomery(BIGNUM *r, BIGNUM *a, BN_MONT_CTX *mont,
BN_CTX *ctx);

DESCRIPTION

0.9.7c

This library performs arithmetic operations on integers of arbitrary size. It was written for use in public
key cryptography, such &sA and Diffie—Hellman.

It uses dynamic memory allocation for storing its data structures. That means that there is no limit on
the size of the numbers manipulated by these functions, but return values must always be checked in

2001-09-03 137

bn(3) OpenSSL bn(3)

case a memory allocation error has occurred.

The basic object in this library isBAGNUM . It is used to hold a single large integer. This type should
be considered opaque and fields should not be modified or accessed directly.

The creation 0BIGNUM objects is described iBN_new(3); BN_add3) describes most of the arith-
metic operations. Comparison is describe®@hk cmp(3); BN_zerd3) describes certain assignments,
BN_rand(3) the generation of random numbe$|_generate_prim@) deals with prime numbers and
BN_set_bi{3) with bit operations. The conversion B[GNUM s to external formats is described in
BN_bn2bin(3).

SEE ALSO
bn_internal3), dh(3), err(3), rand(3), rsa(3), BN_new3), BN_CTX new3), BN_copy3),
BN_swag3), BN_num_byte@), BN_add3), BN_add word3), BN_cmg3), BN_zerq3),
BN_rand(3), BN_generate primg), BN_set bi{3), BN_bn2bin(3), BN_mod_inversg),
BN_mod_mul_reciprocgB), BN_mod_mul_montgome(s)

138 2001-09-03 0.9.7c

BN_add(3) OpenSSL BN_add(3)

NAME

BN_add, BN_sub, BN_mul, BN_sqgr, BN_div, BN_mod, BN_nnmod, BN_mod_add, BN_mod_sub,
BN_mod_mul, BN_mod_sqr, BN_exp, BN_mod_exp, BN_gcd - arithmetic operations on BIGNUMs

SYNOPSIS

#include <openssl/bn.h>

int BN_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b);
int BN_sub(BIGNUM *r, const BIGNUM *a, const BIGNUM *b);
int BN_mul(BIGNUM *r, BIGNUM *a, BIGNUM *b, BN_CTX *ctx);
int BN_sqr(BIGNUM *r, BIGNUM *a, BN_CTX *ctx);

int BN_div(BIGNUM *dv, BIGNUM *rem, const BIGNUM *a, const BIGNUM *d,
BN_CTX *ctx);

int BN_mod(BIGNUM *rem, const BIGNUM *a, const BIGNUM *m, BN_CTX *ctx);
int BN_nnmod(BIGNUM *r, const BIGNUM *a, const BIGNUM *m, BN_CTX *ctx);

int BN_mod_add(BIGNUM *r, BIGNUM *a, BIGNUM *b, const BIGNUM *m,
BN_CTX *ctx);

int BN_mod_sub(BIGNUM *r, BIGNUM *a, BIGNUM *b, const BIGNUM *m,
BN_CTX *ctx);

int BN_mod_mul(BIGNUM *r, BIGNUM *a, BIGNUM *b, const BIGNUM *m,
BN_CTX *ctx);

int BN_mod_sqr(BIGNUM *r, BIGNUM *a, const BIGNUM *m, BN_CTX *ctx);
int BN_exp(BIGNUM *r, BIGNUM *a, BIGNUM *p, BN_CTX *ctx);

int BN_mod_exp(BIGNUM *r, BIGNUM *a, const BIGNUM *p,
const BIGNUM *m, BN_CTX *ctx);

int BN_gcd(BIGNUM *r, BIGNUM *a, BIGNUM *b, BN_CTX *ctx);

DESCRIPTION

0.9.7c

BN_add()addsa andb and places the result ir=a+b). r may be the sam@IGNUM asaor b.
BN_sub()subtractd from a and places the result ifr=a-b).

BN_mul()multipliesa andb and places the result ifr=a*b). r may be the sam@GNUM asa or b.
For multiplication by powers of 2, uN_Ishift(3).

BN_sqgr()takes the square afand places the result in(r=a"2). r anda may be the samBIGNUM .
This function is faster than BN_mul(r,a,a).

BN_div()dividesa by d and places the result dv and the remainder irem (dv=a/d, rem=a%d).
Either ofdvandrem may beNULL, in which case the respective value is not returned. The result is
rounded towards zero; thusdfis negative, the remainder will be zero or negative. For division by
powers of 2, usBN_rshift(3).

BN_mod()orresponds t8N_div()with dv set toNULL .

BN_nnmod(yeducesa modulomand places the non-negative remaindet in
BN_mod_add(addsa to b modulom and places the non-negative result.in
BN_mod_sub(@ubtractd from a modulomand places the non-negative resulit.in

BN_mod_mul()multiplies a by b and finds the non-negative remainder respective to modulus
(r=(a*b) mod m). r may be the samBIGNUM asa or b. For more efficient algorithms for repeated
computations using the same modulus, BBe mod_mul_montgome8) andBN_mod_mul_recipro-
cal (3).

BN_mod_sqr(Jakes the square afmodulom and places the result in

BN_exp(raisesa to thep-th power and places the resultrir=a"p). This function is faster than
repeated applications 8N_mul()

2002-09-25 139

BN_add(3) OpenSSL BN_add(3)

BN_mod_rp() computesa to thep—th power modulan (r=a"p % m). This function uses less time
and space thaBN_exp().

BN_gcd()computes the greatest common divisora@dnd b and places the result mr may be the
sameBIGNUM asaor b.

For all functions, ctx is a previously allocatedBN_CTX used for temporary variables; see
BN_CTX_new3).

Unless noted otherwise, the reRIGNUM must be different from the arguments.

RETURN VALUES

For all functions, 1 is returned for success, 0 on error. The return value should always be checked (e.g.,
if (\BN_add(r,a,b)) goto err;). The error codes can be obtainedHRR_get_erro(3).

SEE ALSO

bn(3), ERR_get_erro3), BN_CTX new3), BN_add_word3), BN_set_bi(3)

HISTORY

140

BN_add() BN_sub() BN_sqr() BN_div(), BN_mod(),BN_mod_mul()BN_mod_exp(and BN_gcd()
are available in all versions of SSLeay and OpenSSL.cthargument toBN_mul()was added in
SSlLeay 0.9.1bBN_exp()appeared in SSLeay 0.9.BN_nnmod() BN_mod_add()BN_mod_sub()
andBN_mod_sqr(yvere added in OpenSSL 0.9.7.

2002-09-25 0.9.7c

BN_add_word(3) OpenSSL BN_add_word(3)

NAME

BN_add_word, BN_sub_word, BN_mul_word, BN_div_word, BN_mod_word — arithmetic functions
on BIGNUMSs with integers

SYNOPSIS

#include <openssl/bn.h>

int BN_add_word(BIGNUM *a, BN_ULONG w);

int BN_sub_word(BIGNUM *a, BN_ULONG w);

int BN_mul_word(BIGNUM *a, BN_ULONG w);

BN_ULONG BN_div_word(BIGNUM *a, BN_ULONG w);
BN_ULONG BN_mod_word(const BIGNUM *a, BN_ULONG w);

DESCRIPTION

These functions perform arithmetic operations on BIGNUMs with unsigned integers. They are much
more efficient than the normaIGNUM arithmetic operations.

BN_add_word(addsw to a (a+=w).

BN_sub_word(subtractsv from a (a—=w).
BN_mul_word()multipliesa andw (a*=b).
BN_div_word()dividesa by w (a/=w) and returns the remainder.
BN_mod_word(Jeturns the remainder afdivided byw (a%m).
ForBN_div_word(JandBN_mod_word()w must not be 0.

RETURN VALUES

BN_add_word()BN_sub_word(andBN_mul_word(return 1 for success, 0 on error. The error codes
can be obtained byRR_get_erro(3).

BN_mod_word(andBN_div_word(xeturna%w.

SEE ALSO

bn(3), ERR _get_erro¢3), BN_add3)

HISTORY

0.9.7c

BN_add_word() and BN_mod_word()are available in all versions of SSLeay and OpenSSL.
BN_div_word(was added in SSLeay 0.8, a@BN_sub_word(andBN_mul_word(jn SSLeay 0.9.0.

2002-09-25 141

BN_bn2bin(3) OpenSSL BN_bn2hin(3)

NAME
BN_bn2bin, BN_bin2bn, BN_bn2hex, BN_bn2dec, BN_hex2bn, BN_dec2bn, BN_print, BN_print_fp,
BN_bn2mpi, BN_mpi2bn - format conversions

SYNOPSIS
#include <openssl/bn.h>

int BN_bn2bin(const BIGNUM *a, unsigned char *to);
BIGNUM *BN_hin2bn(const unsigned char *s, int len, BIGNUM *ret);

char *BN_bn2hex(const BIGNUM *a);
char *BN_bn2dec(const BIGNUM *a);
int BN_hex2bn(BIGNUM **a, const char *str);
int BN_dec2bn(BIGNUM **a, const char *str);

int BN_print(BIO *fp, const BIGNUM *a);
int BN_print_fp(FILE *fp, const BIGNUM *a);

int BN_bn2mpi(const BIGNUM *a, unsigned char *to);
BIGNUM *BN_mpi2bn(unsigned char *s, int len, BIGNUM *ret);

DESCRIPTION
BN_bn2bin()converts the absolute value afnto big-endian form and stores ittat to must point to
BN_num_bytes{) bytes of memory.

BN_bin2bn()converts the positive integer in big-endian form of lerlgthat s into a BIGNUM and
places it irret. If ret is NULL, a newBIGNUM is created.

BN_bn2hex(pndBN_bn2dec(Jeturn printable strings containing the hexadecimal and decimal encod-
ing of arespectively. For negative numbers, the string is prefaced with a leading '-'. The string must be
freed later usinPENSSL_free()

BN_hex2bn(konverts the stringtr containing a hexadecimal number t@i&NUM and stores it in
**bn. If * bn is NULL, a newBIGNUM is created. Ibn is NULL, it only computes the number’s length
in hexadecimal digits. If the string starts with '=’, the number is negaside.dec2bn()s the same
using the decimal system.

BN_print() and BN_print_fp() write the hexadecimal encoding af with a leading '-’ for negative
numbers, to thelo or FILE fp.

BN_bn2mpi(JandBN_mpi2bn()}onvertBIGNUM s from and to a format that consists of the number’s
length in bytes represented as a 4-byte big-endian number, and the number itself in big-endian format,
where the most significant bit signals a negative number (the representation of numbers M&R the

set is prefixed with null byte).

BN_bn2mpi(stores the representationatto, whereto must be large enough to hold the result. The
size can be determined by calling BN_bn2mpi@l.L).

BN_mpi2bn()converts thden bytes long representation &ito aBIGNUM and stores it atet, or in a
newly allocatedBIGNUM if ret is NULL.

RETURN VALUES
BN_bn2bin()returns the length of the big-endian number placetbbatBN_bin2bn()returns the
BIGNUM, NULL on error.

BN_bn2hex(Jand BN_bn2dec(xeturn a null-terminated string, &ULL on error.BN_hex2bn(jand
BN_dec2bn(yeturn the number’s length in hexadecimal or decimal digits, and O on error.

BN_print_fp(JandBN_print()return 1 on success, 0 on write errors.

BN_bn2mpi(returns the length of the representatiBN. mpi2bn(yeturns theBIGNUM , andNULL on
error.

The error codes can be obtained2R_get_errof3).

SEE ALSO
bn(3), ERR_get _erro(3), BN_zerd3),ASN1_INTEGER_to B(8), BN_num_byte3)

142 2002-09-25 0.9.7c

BN_bn2bin(3) OpenSSL BN_bn2hin(3)

HISTORY
BN_bn2bin() BN_bin2bn() BN_print_fp()andBN_print() are available in all versions of SSLeay and
OpenSSL.

BN_bn2hex()BN_bn2dec()BN_hex2bn()BN_dec2bn()BN_bn2mpi(Jand BN_mpi2bn(were added
in SSLeay 0.9.0.

0.9.7c 2002-09-25 143

BN_cmp(3) OpenSSL BN_cmp(3)

NAME
BN_cmp, BN_ucmp, BN_is_zero, BN_is_one, BN_is_word, BN_is_odd — BIGNUM comparison and
test functions

SYNOPSIS
#include <openssl/bn.h>

int BN_cmp(BIGNUM *a, BIGNUM *b);
int BN_ucmp(BIGNUM *a, BIGNUM *b);
int BN _is_zero(BIGNUM *a);
int BN_is_one(BIGNUM *a);
int BN_is_word(BIGNUM *a, BN_ULONG w);
int BN_is_odd(BIGNUM *a);
DESCRIPTION
BN_cmp()compares the numbesasandb. BN_ucmp(compares their absolute values.

BN_is_zero()BN_is_one(rndBN_is_word(}test ifa equals 0, 1, ow respectivelyBN_is_odd(tests
if a is odd.
BN_is_zero()BN_is_one()BN_is_word(JandBN _is_odd(jare macros.

RETURN VALUES

BN_cmp(returns -1l ifa<b, Oifa==b and 1 ifa>b. BN_ucmp()s the same using the absolute val-
ues ofa andb.

BN_is_zero() BN_is_one() BN _is_word@nd BN_is_odd()return 1 if the condition is true, 0 other-
wise.

SEE ALSO
bn(3)

HISTORY

BN_cmp() BN_ucmp() BN_is_zero()BN_is_one(Jand BN_is_word()are available in all versions of
SSlLeay and OpenSSIBN is_odd(was added in SSLeay 0.8.

144 2000-01-27 0.9.7c

BN_copy(3) OpenSSL BN_copy(3)

NAME
BN_copy, BN_dup - copy BIGNUMs

SYNOPSIS
#include <openssl/bn.h>
BIGNUM *BN_copy(BIGNUM *to, const BIGNUM *from);
BIGNUM *BN_dup(const BIGNUM *from);

DESCRIPTION
BN_copy()copiesfrom to to. BN_dup()creates a neBIGNUM containing the valuérom.

RETURN VALUES
BN_copy()returnsto on success\ULL on error.BN_dup()returns the nevBIGNUM, andNULL on
error. The error codes can be obtainedERR_get_erro3).

SEE ALSO
bn(3), ERR_get_erro(3)

HISTORY
BN_copy(JandBN_dup()are available in all versions of SSLeay and OpenSSL.

0.9.7c 2002-09-25 145

BN_CTX_new(3) OpenSSL BN_CTX_new(3)

NAME

BN_CTX_new, BN_CTX init, BN_CTX_free — allocate and free BN_CTX structures

SYNOPSIS

#include <openssl/bn.h>
BN_CTX *BN_CTX_new(void);
void BN_CTX _init(BN_CTX *c);
void BN_CTX free(BN_CTX *c);

DESCRIPTION

A BN_CTX is a structure that holdBIGNUM temporary variables used by library functions. Since
dynamic memory allocation to creaBGNUM s is rather expensive when used in conjunction with
repeated subroutine calls, thR_CTX structure is used.

BN_CTX_new(jllocates and initializes BN_CTX structure.BN_CTX _init()initializes an existing
uninitializedBN_CTX.

BN_CTX_free(jrees the components of tB&l_CTX, and if it was created BN _CTX_new(), also the
structure itself. IfBBN_CTX_star(3) has been used on tB&l_CTX, BN_CTX_end3) must be called
before theBN_CTX may be freed bBN_CTX_free()

RETURN VALUES

BN_CTX_new(yeturns a pointer to theN_CTX. If the allocation fails, it returnsIULL and sets an
error code that can be obtainedERR_get_erro(3).

BN_CTX _init)andBN_CTX_free(have no return values.

SEE ALSO

bn(3), ERR _get_erro¢3), BN_add3),BN_CTX_star(3)

HISTORY

146

BN_CTX _new()and BN_CTX free()are available in all versions on SSLeay and OpenSSL.
BN_CTX init()was added in SSLeay 0.9.1b.

2002-09-25 0.9.7c

BN_CTX_start(3) OpenSSL BN_CTX_start(3)

NAME
BN_CTX_start, BN_CTX get, BN_CTX_end - use temporary BIGNUM variables

SYNOPSIS
#include <openssl/bn.h>

void BN_CTX_start(BN_CTX *ctx);
BIGNUM *BN_CTX_get(BN_CTX *ctx);
void BN_CTX_end(BN_CTX *ctx);

DESCRIPTION
These functions are used to obtain tempoBM@NUM variables from &N_CTX (which can been cre-
ated by usingBN_CTX_new3)) in order to save the overhead of repeatedly creating and freeing
BIGNUM s in functions that are called from inside a loop.

A function must calBN_CTX_start()first. Then,BN_CTX_get(may be called repeatedly to obtain
temporanBIGNUM s. All BN_CTX_get(ralls must be made before calling any other functions that use
thectx as an argument.

Finally, BN_CTX_end(must be called before returning from the function. WB&h CTX end()s
called, theBIGNUM pointers obtained froBN_CTX_get(pecome invalid.

RETURN VALUES
BN_CTX_start(andBN_CTX_end()eturn no values.

BN_CTX_get(returns a pointer to theIGNUM, or NULL on error. OnceBN_CTX_get(has failed,

the subsequent calls will retuNULL as well, so it is sufficient to check the return value of the last
BN_CTX get()call. In case of an error, an error code is set, which can be obtained by
ERR_get_erro(3).

SEE ALSO
BN_CTX_newB3)

HISTORY
BN_CTX_start()BN_CTX _get(andBN_CTX_end(vere added in OpenSSL 0.9.5.

0.9.7c 2000-07-11 147

BN_generate_prime(3) OpenSSL BN_generate_prime(3)

NAME

BN_generate_prime, BN_is_prime, BN_is_prime_fasttest — generate primes and test for primality

SYNOPSIS

#include <openssl/bn.h>

BIGNUM *BN_generate_prime(BIGNUM *ret, int num, int safe, BIGNUM *add,
BIGNUM *rem, void (*callback)(int, int, void *), void *cb_arg);

int BN _is_prime(const BIGNUM *a, int checks, void (*callback)(int, int,
void *), BN_CTX *ctx, void *cb_arg);

int BN _is_prime_fasttest(const BIGNUM *a, int checks,
void (*callback)(int, int, void *), BN_CTX *ctx, void *cb_arg,
int do_trial_division);

DESCRIPTION

BN_generate_prime@enerates a pseudo-random prime numberuof bits. If ret is not NULL, it
will be used to store the number.

If callbackis notNULL, it is called as follows:

» callback(O, i, cb_arg)is called after generating the i-th potential prime number.

* While the number is being tested for primaligllback(1, j, cb_arg)is called as described below.
* When a prime has been fouma/lback(2, i, cb_arg)is called.

The prime may have to fulfill additional requirements for use in Diffie-Hellman key exchange:

If add is notNULL, the prime will fulfill the condition p %add == rem (p % add == 1 if rem ==
NULL) in order to suit a given generator.

If safeis true, it will be a safe prime (i.e. a prime p so that (p—1)/2 is also prime).

The PRNG must be seeded prior to callil@N_generate_prime()The prime number generation has a
negligible error probability.

BN_is_prime(JandBN_is_prime_fasttest{est if the numbea is prime. The following tests are per-
formed until one of them shows thats composite; ifa passes all these tests, it is considered prime.

BN _is_prime_fasttest(jvhen called withdo_trial_division == 1, first attempts trial division by a num-
ber of small primes; if no divisors are found by this test @adtback is not NULL , callback(1, -1,
cb_arg)is called. Ifdo_trial_division == 0, this test is skipped.

Both BN _is_prime()and BN_is_prime_fasttest(erform a Miller-Rabin probabilistic primality test
with checksiterations. Ifchecks == BN_prime_checks, a number of iterations is used that yields a
false positive rate of at most 2°-80 for random input.

If callback is notNULL, callback(l, j, cb_arg)is called after the j-th iteration (j = 0, 1, .cjx is a
pre-allocatedN_CTX (to save the overhead of allocating and freeing the structure in a lodgL ot

RETURN VALUES

BN_generate_prime€eturns the prime number on succéddl L otherwise.

BN_is_prime()returns 0 if the number is composite, 1 if it is prime with an error probability of less
than 0.25%checks, and -1 on error.

The error codes can be obtained®BR_get_errof3).

SEE ALSO

bn(3), ERR_get_erro¢3), rand(3)

HISTORY

148

The cb_arg arguments tBN_generate_prime@nd toBN_is_prime()were added in SSLeay 0.9.0.
The ret argument toBN_generate_prime(@vas added in SSLeay 0.9.BN_is_prime_fasttestfyas
added in OpenSSL 0.9.5.

2003-01-13 0.9.7c

bn_internal(3) OpenSSL bn_internal(3)

NAME
bn_mul_words, bn_mul_add_words, bn_sqr_words, bn_div_words, bn_add_words, bn_sub_words,
bn_mul_comba4, bn_mul_comba8, bn_sqr_comba4, bn_sqr_comba8, bn_cmp_words, bn_mul_normal,
bn_mul_low_normal, bn_mul_recursive, bn_mul_part_recursive, bn_mul_low_recursive, bn_mul_high,
bn_sqr_normal, bn_sqgr_recursive, bn_expand, bn_wexpand, bn_expand2, bn_fix_top, bn_check top,
bn_print, bn_dump, bn_set_max, bn_set_high, bn_set _low — BIGNUM library internal functions

SYNOPSIS

BN_ULONG bn_mul_words(BN_ULONG *rp, BN_ULONG *ap, int num, BN_ULONG w);

BN_ULONG bn_mul_add_words(BN_ULONG *rp, BN_ULONG *ap, int num,
BN_ULONG w);

void bn_sqr_words(BN_ULONG *rp, BN_ULONG *ap, int num);

BN_ULONG bn_div_words(BN_ULONG h, BN_ULONG |, BN_ULONG d);

BN_ULONG bn_add_words(BN_ULONG *rp, BN_ULONG *ap, BN_ULONG *bp,
int num);

BN_ULONG bn_sub_words(BN_ULONG *rp, BN_ULONG *ap, BN_ULONG *bp,
int num);

void bn_mul_comba4(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b);
void bn_mul_comba8(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b);
void bn_sqgr_comba4(BN_ULONG *r, BN_ULONG *a);
void bn_sqgr_comba8(BN_ULONG *r, BN_ULONG *a);

int bn_cmp_words(BN_ULONG *a, BN_ULONG *b, int n);

void bn_mul_normal(BN_ULONG *r, BN_ULONG *a, int na, BN_ULONG *b,
int nb);
void bn_mul_low_normal(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n);
void bn_mul_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2,
int dna,int dnb,BN_ULONG *tmp);
void bn_mul_part_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b,
int n, int tna,int thb, BN_ULONG *tmp);
void bn_mul_low_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b,
int n2, BN_ULONG *tmp);
void bn_mul_high(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, BN_ULONG *|,
int n2, BN_ULONG *tmp);

void bn_sgr_normal(BN_ULONG *r, BN_ULONG *a, int n, BN_ULONG *tmp);
void bn_sqgr_recursive(BN_ULONG *r, BN_ULONG *a, int n2, BN_ULONG *tmp);

void mul(BN_ULONG r, BN_ULONG a, BN_ULONG w, BN_ULONG c);
void mul_add(BN_ULONG r, BN_ULONG a, BN_ULONG w, BN_ULONG c);
void sqr(BN_ULONG r0, BN_ULONG r1, BN_ULONG a);

BIGNUM *bn_expand(BIGNUM *a, int bits);
BIGNUM *bn_wexpand(BIGNUM *a, int n);
BIGNUM *bn_expand2(BIGNUM *a, int n);

void bn_fix_top(BIGNUM *a);

void bn_check_top(BIGNUM *a);

void bn_print(BIGNUM *a);

void bn_dump(BN_ULONG *d, int n);

void bn_set_max(BIGNUM *a);

void bn_set_high(BIGNUM *r, BIGNUM *a, int n);
void bn_set_low(BIGNUM *r, BIGNUM *a, int n);

DESCRIPTION
This page documents the internal functions used by the OpeBISSIUM implementation. They are
described here to facilitate debugging and extending the library. Theyotte be used by applica-
tions.

0.9.7c 2002-05-30 149

bn_internal(3) OpenSSL bn_internal(3)

The BIGNUM structure
typedef struct bignum_st

int top; /* index of last used d (most significant word) */
BN_ULONG *d; /* pointer to an array of 'BITS2’ bit chunks */
int max; [* size of the d array */

int neg; [* sign */

} BIGNUM;

The big number is stored @) a malloc()ed array d8N_ULONGS, least significant first. AN_ULONG
can be either 16, 32 or 64 bits in siz&TE2), depending on the 'number of bits’ specified in
openssl/bn.h.

max is the size of the array that has been allocateidp is the 'last’ entry being used, so for a value
of 4, bn.d[0]=4 and bn.top=Inegis 1 if the number is negative. WheBENUM is 0, thed field can
beNULL andtop ==0.

Various routines in this library require the use of tempoB®NUM variables during their execution.
Since dynamic memory allocation to cre8I&NUM s is rather expensive when used in conjunction
with repeated subroutine calls, tBR_CTX structure is used. This structure contaiis CTX_NUM
BIGNUM s, seeBN_CTX_star(3).

Low-level arithmetic operations

These functions are implemented in C and for several platforms in assembly language:

bn_mul_wordsf, ap, num, w) operates on thaum word arraysrp andap. It computesap * w,
places the result irp, and returns the high word (carry).

bn_mul_add_wordsg, ap, num, w) operates on theum word arraysp andap. It computesap * w
+rp, places the result irp, and returns the high word (carry).

bn_sqr_wordsp, ap, n) operates on theum word arrayap and the 2hum word arrayap. It com-
putesap * ap word-wise, and places the low and high bytes of the resrpt. in

bn_div_worddl, |, d) divides the two word number (hby d and returns the result.

bn_add_wordsp, ap, bp, num) operates on theum word arraysap, bp andrp. It computesap +
bp, places the result ifp, and returns the high word (carry).

bn_sub_wordsp, ap, bp, num) operates on theum word arraysap, bp andrp. It computesap -
bp, places the result ifp, and returns the carry (1hp > ap, 0 otherwise).

bn_mul_comba4(a, b) operates on the 4 word arragsandb and the 8 word arrag It computes
a*b and places the resultin

bn_mul_comba8(a, b) operates on the 8 word arraggndb and the 16 word array It computes
a*b and places the resultin

bn_sqr_comba4a, b) operates on the 4 word arrayandb and the 8 word array
bn_sqr_comba8(a, b) operates on the 8 word arrayandb and the 16 word array
The following functions are implemented in C:

bn_cmp_words(, b, n) operates on tha word arraysa andb. It returns 1, 0 and -1 i is greater
than, equal and less than

bn_mul_normal{ a, na, b, nb) operates on thea word arraya, thenb word arrayb and thena+nb
word arrayr. It computesa*b and places the result in

bn_mul_low_normal({ a, b, n) operates on the word arrays, a andb. It computes the low words
of a*b and places the resultin

bn_mul_recursive(a, b, n2, dna, dnb, t) operates on the word arragsandb of lengthn2+dna and
n2+dnb (dna anddnb are currently allowed to be 0 or negative) and the2a%ord arrays andt. n2
must be a power of 2. It computa and places the resultin

bn_mul_part_recursivg(a, b, n, tna, tnb, tmp) operates on the word arragsandb of lengthn+tna
andn+tnb and the 4t word arrays andtmp.

150 2002-05-30 0.9.7c

bn_internal(3) OpenSSL bn_internal(3)

bn_mul_lov_recursivex, a, b, n2, tmp) operates on tha2 word arrays andtmp and then2/2 word
arraysa andb.

bn_mul_high(, a, b, |, n2, tmp) operates on the2 word arraysr, a, b andl (?) and the 342 word
arraytmp.

BN_mul()calls bn_mul_normal() or an optimized implementation if the factors have the same size:
bn_mul_comba8()s used if they are 8 words longpn_mul_recursive()if they are larger than
BN_MULL_SIZE_NORMAL and the size is an exact multiple of the word size bemanul_part_recur-
sive()for others that are larger tha&N_MULL_SIZE_NORMAL .

bn_sqr_normait(a, n, tmp) operates on the word arraya and the 2*nword arraygmp andr.

The implementations use the following macros which, depending on the architecture, may use “long
long” C operations or inline assembler. They are defindzhinicl.h

mul(r, a, w, ¢) computesv*a+cand places the low word of the resultiand the high word ic.

mul_add(, a, w, ¢) computesv*a+r+c and places the low word of the resultriand the high word in
C.

sqr(o, rl, a) computes*a and places the low word of the resulrthand the high word inl.

Size changes

bn_expand(ensures thab has enough space forbits bit number. bn_wexpand(gensures thab has
enough space for an word number. If the number has to be expanded, both macros call
bn_expand2(), which allocates a neéwarray and copies the data. They retNiWLL on error,b other-
wise.

The bn_fix_top()macro reduces—>top to point to the most significant non-zero word wlehas
shrunk.

Debugging

bn_check_top(yerifies that((a)->top >= 0 && (a)->top <= (a)->max). A violation

will cause the program to abort.

bn_print() printsa to stderrbn_dump(printsn words atd (in reverse order, i.e. most significant word
first) to stderr.

bn_set_max()nakesa a static number with max of its current size. This is used by_set_low(and
bn_set_high(Jo maker a read-onlyBIGNUM that contains tha low or high words of.

If BN_DEBUG is not definedbn_check top(bn_print() bn_dump(jandbn_set _max(are defined as
empty macros.

SEE ALSO

0.9.7¢c

bn(3)

2002-05-30 151

BN_mod_inverse(3) OpenSSL BN_mod_inverse(3)

NAME
BN_mod_inverse — compute inverse modulo n

SYNOPSIS
#include <openssl/bn.h>

BIGNUM *BN_mod_inverse(BIGNUM *r, BIGNUM *a, const BIGNUM *n,
BN_CTX *ctx);

DESCRIPTION
BN_mod_inverse@@omputes the inverse afmodulon places the result in ((@*r)%n==1). If r is
NULL, a newBIGNUM is created.

ctx is a previously allocateAN_CTX used for temporary variablesmay be the samBIGNUM asa
orn.

RETURN VALUES
BN_mod_inversefeturns theBIGNUM containing the inverse, amnNULL on error. The error codes can
be obtained bERR_get_erro(3).

SEE ALSO
bn(3), ERR _get_erro¢3), BN_add3)

HISTORY
BN_mod_inverse(} available in all versions of SSLeay and OpenSSL.

152 2002-09-25 0.9.7c

BN_mod_mul_montgomery(3) OpenSSL BN_mod_mul_montgomery(3)

NAME
BN_mod_mul_montgomery, BN_MONT_CTX new, BN_MONT_CTX init, BN_MONT_CTX free,
BN_MONT_CTX_set, BN_MONT_CTX_copy, BN_from_montgomery, BN_to_montgomery — Mont-
gomery multiplication

SYNOPSIS
#include <openssl/bn.h>

BN_MONT_CTX *BN_MONT_CTX_new(void);
void BN_MONT_CTX_init(BN_MONT_CTX *ctx);
void BN_MONT_CTX free(BN_MONT_CTX *mont);

int BN_MONT_CTX_ set(BN_MONT_CTX *mont, const BIGNUM *m, BN_CTX *ctx);
BN_MONT_CTX *BN_MONT_CTX_copy(BN_MONT_CTX *to, BN_MONT_CTX *from);

int BN_mod_mul_montgomery(BIGNUM *r, BIGNUM *a, BIGNUM *b,
BN_MONT_CTX *mont, BN_CTX *ctx);

int BN_from_montgomery(BIGNUM *r, BIGNUM *a, BN_MONT_CTX *mont,
BN_CTX *ctx);

int BN_to_montgomery(BIGNUM *r, BIGNUM *a, BN_MONT_CTX *mont,
BN_CTX *ctx);

DESCRIPTION
These functions implement Montgomery multiplication. yhare used automatically when
BN_mod_exf3) is called with suitable input, but they may be useful when several operations are to be
performed using the same modulus.

BN_MONT_CTX_new@llocates and initializes BN_MONT_CTX structure. BN_MONT_CTX_init()
initializes an existing uninitializeEN_MONT_CTX.

BN_MONT_CTX_set@ets up thenontstructure from the modulus by precomputing its inverse and
avalue R.

BN_MONT_CTX_copy@opies theBN_MONT_CTX fromto to.

BN_MONT_CTX free(frees the components of tH®N_MONT_CTX, and, if it was created by
BN_MONT_CTX_new(), also the structure itself.

BN_mod_mul_montgomengdmputes Mont(d):=a*b*R"-1 and places the resultiin
BN_from_montgomeryferforms the Montgomery reductiorr a*R™-1.

BN_to_montgomery@omputes Mont(a,R"2), i.@*R. Note thata must be non-negative and smaller
than the modulus.

For all functionsgctxis a previously allocateBN_CTX used for temporary variables.
TheBN_MONT_CTX structure is defined as follows:
typedef struct bn_mont_ctx_st

{

int ri; /* number of bits in R */

BIGNUM RR; /* R"2 (used to convert to Montgomery form) */
BIGNUM N; /* The modulus */

BIGNUM Ni; /* R*(1/R mod N) - N*Ni =1

* (Ni is only stored for bignum algorithm) */
BN_ULONG n0; [* least significant word of Ni */
int flags;
} BN_MONT_CTX;

BN_to_montgomery(¥ a macro.

RETURN VALUES
BN_MONT_CTX_new(gturns the newly allocat®N_MONT_CTX, andNULL on error.

BN_MONT_CTX init(andBN_MONT_CTX_freef)ave no return values.
For the other functions, 1 is returned for success, 0 on error. The error codes can be obtained by

0.9.7c 2002-09-25 153

BN_mod_mul_montgomery(3) OpenSSL BN_mod_mul_montgomery(3)

ERR_@t_error(3).

WARNING
The inputs must be reduced modmipotherwise the result will be outside the expected range.

SEE ALSO
bn(3), ERR_get_erro(3), BN_add3),BN_CTX_new3)

HISTORY
BN_MONT_CTX new(), BN_MONT_CTX_ free(), BN_MONT_CTX_ set() BN_mod_mul_mont-
gomery(),BN_from_montgomery@nd BN_to_montgomery@re available in all versions of SSLeay
and OpenSSL.

BN_MONT_CTX _init(andBN_MONT_CTX_copy(yere added in SSLeay 0.9.1b.

154 2002-09-25 0.9.7c

BN_mod_mul_reciprocal(3) OpenSSL BN_mod_mul_reciprocal(3)

NAME
BN_mod_mul_reciprocal, BN_div_recp, BN_RECP_CTX new, BN_RECP_CTX init,
BN_RECP_CTX free, BN_RECP_CTX_set — modular multiplication using reciprocal

SYNOPSIS

#include <openssl/bn.h>

BN_RECP_CTX *BN_RECP_CTX_new(void);

void BN_RECP_CTX_init(BN_RECP_CTX *recp);

void BN_RECP_CTX_ free(BN_RECP_CTX *recp);

int BN_RECP_CTX_set(BN_RECP_CTX *recp, const BIGNUM *m, BN_CTX *ctx);

int BN_div_recp(BIGNUM *dv, BIGNUM *rem, BIGNUM *a, BN_RECP_CTX *recp,
BN_CTX *ctx);

int BN_mod_mul_reciprocal(BIGNUM *r, BIGNUM *a, BIGNUM *b,
BN_RECP_CTX *recp, BN_CTX *ctx);

DESCRIPTION
BN_mod_mul_reciprocal(an be used to perform an efficid®l_mod_mul3) operation when the
operation will be performed repeatedly with the same modulus. It compatath)%m using
recp=1/m, which is set as described belouwtx is a previously allocateBN_CTX used for temporary
variables.

BN_RECP_CTX n&) allocates and initializes BN_RECP structure. BN_RECP_CTX_init()nitial-
izes an existing uninitialize@N_RECP.

BN_RECP_CTX free(frees the components of thBN_RECP, and, if it was created by
BN_RECP_CTX_new(), also the structure itself.

BN_RECP_CTX set@3toresm in recp and sets it up for computingrd/and shifting it left by
BN_num_bitsn)+1 to make it an integer. The result and the number of bits it was shifted left will later
be stored imecp.

BN_div_recp(dividesa by m usingrecp. It places the quotient kv and the remainder irem.
TheBN_RECP_CTX structure is defined as follows:
typedef struct bn_recp_ctx_st

BIGNUM N; * the divisor */
BIGNUM Nr; [* the reciprocal */
int num_bits;

int shift;

int flags;

} BN_RECP_CTX;
It cannot be shared between threads.

RETURN VALUES
BN_RECP_CTX_ newf(®turns the newly allocate®N_RECP_CTX, andNULL on error.

BN_RECP_CTX init@ndBN_RECP_CTX_freeflave no return values.

For the other functions, 1 is returned for success, 0 on error. The error codes can be obtained by
ERR_get_erro(3).

SEE ALSO
bn(3), ERR_get_erro(3), BN_add3),BN_CTX_new3)

HISTORY
BN_RECP_CTX was added in SSLeay 0.9.0. Before that, the funcBbh reciprocal() was used
instead, and thBN_mod_mul_reciprocal@rguments were different.

0.9.7c 2002-09-25 155

BN_new(3) OpenSSL BN_new(3)

NAME
BN_new, BN _init, BN_clear, BN_free, BN_clear_free — allocate and free BIGNUMs

SYNOPSIS
#include <openssl/bn.h>

BIGNUM *BN_new(void);

void BN_init(BIGNUM *);

void BN_clear(BIGNUM *a);

void BN_free(BIGNUM *a);

void BN_clear_free(BIGNUM *a);

DESCRIPTION
BN_new()allocated and initializes BIGNUM structure.BN_init() initializes an existing uninitialized
BIGNUM .

BN_clear()is used to destroy sensitive data such as keys when they are no longer needed. It erases the
memory used bg and sets it to the value 0.

BN_free()frees the components of tB6GNUM , and if it was created bBN_new(), also the structure
itself. BN_clear_free(jpdditionally overwrites the data before the memory is returned to the system.

RETURN VALUES
BN_new()returns a pointer to thBIGNUM . If the allocation fails, it returnslULL and sets an error
code that can be obtained BRR_get_erro(3).

BN_init(), BN_clear() BN_free()andBN_clear_free(have no return values.

SEE ALSO
bn(3), ERR_get_erro(3)

HISTORY
BN_new(),BN_clear() BN_free()and BN_clear_free()are available in all versions on SSLeay and
OpenSSL.BN_init()was added in SSLeay 0.9.1b.

156 2002-09-25 0.9.7c

BN_num_bytes(3) OpenSSL BN_num_bytes(3)

NAME
BN_num_bits, BN_num_bytes, BN_num_bits_word — get BIGNUM size

SYNOPSIS
#include <openssl/bn.h>

int BN_num_bytes(const BIGNUM *a);
int BN_num_bits(const BIGNUM *a);
int BN_num_bits_word(BN_ULONG w);

DESCRIPTION
These functions return the size oBBEENUM in bytes or bits, and the size of an unsigned integer in
bits.

BN_num_bytes(s a macro.

RETURN VALUES
The size.

SEE ALSO
bn(3)

HISTORY
BN_num_bytes(BN_num_bits(andBN_num_bits_word@re available in all versions of SSLeay and
OpenSSL.

0.9.7c 2000-02-24 157

BN_rand(3) OpenSSL BN_rand(3)

NAME
BN_rand, BN_pseudo_rand — generate pseudo—-random number

SYNOPSIS
#include <openssl/bn.h>

int BN_rand(BIGNUM *rnd, int bits, int top, int bottom);

int BN_pseudo_rand(BIGNUM *rnd, int bits, int top, int bottom);
int BN_rand_range(BIGNUM *rnd, BIGNUM *range);

int BN_pseudo_rand_range(BIGNUM *rnd, BIGNUM *range);

DESCRIPTION
BN_rand()generates a cryptographically strong pseudo-random numbis bits in length and stores
it in rnd. If top is —1, the most significant bit of the random number can be zdaop i$ O, it is set to
1, and iftop is 1, the two most significant bits of the number will be set to 1, so that the product of two
such random numbers will always havéi?s length. Ifbottom is true, the number will be odd.

BN_pseudo_rand@oes the same, but pseudo-random numbers generated by this function are not nec-
essarily unpredictable. They can be used for non-cryptographic purposes and for certain purposes in
cryptographic protocols, but usually not for key generation etc.

BN_rand_range()generates a cryptographically strong pseudo-random numbem the range 0
<It>= rnd <range. BN_pseudo_rand_rangegpes the same, but is basedBM pseudo_rand(and
hence numbers generated by it are not necessarily unpredictable.

ThePRNGmust be seeded prior to calliBN_rand()or BN_rand_range()

RETURN VALUES
The functions return 1 on success, 0 on error. The error codes can be obtdiRRl oyt erro(3).

SEE ALSO
bn(3), ERR_get_erro¢3), rand(3), RAND_add3), RAND_byte$3)

HISTORY
BN_rand()is available in all versions of SSLeay and OpenS8N_pseudo_rand(jvas added in
OpenSSL 0.9.5. Théop == -1 case and the functidBN_rand_range(were added in OpenSSL
0.9.6a.BN_pseudo_rand_rangefjas added in OpenSSL 0.9.6c.

158 2002-09-25 0.9.7c

BN_set_bit(3) OpenSSL BN_set _bit(3)

NAME
BN_set_bit, BN_clear_bhit, BN_is_bhit set, BN_mask bits, BN_Ishift, BN_Ishiftl, BN_rshift,
BN_rshiftl — bit operations on BIGNUMs

SYNOPSIS
#include <openssl/bn.h>

int BN_set bit(BIGNUM *a, int n);
int BN_clear_bit(BIGNUM *a, int n);

int BN _is_bit_set(const BIGNUM *a, int n);
int BN_mask_bits(BIGNUM *a, int n);

int BN_Ishift(BIGNUM *r, const BIGNUM *a, int n);
int BN_Ishift1(BIGNUM *r, BIGNUM *a);

int BN_rshift(BIGNUM *r, BIGNUM *a, int n);
int BN_rshiftL(BIGNUM *r, BIGNUM *a);

DESCRIPTION
BN_set_bit(ets bitn in ato 1 (aC=(1<<n)). The number is expanded if necessary.

BN_clear_bit()sets bitn in ato 0 (a&="(1<<n)). An error occurs ifis shorter tham bits.
BN _is_hit_set(Jests if bitn in ais set.

BN_mask_bits(Jruncatesa to ann bit number 4&="(("0)>>n)). An error occurs if a already is
shorter tham bits.

BN_Ishift()shiftsa left by n bits and places the resultirir=a*2"n). BN_Ishift1()shiftsa left by one
and places the resultinr=2*a).

BN_rshift()shiftsa right by n bits and places the resultiiir=a/2"n). BN_rshift1()shiftsa right by
one and places the resultrifr=a/2).

For the shift functions, anda may be the same variable.

RETURN VALUES
BN _is_hit_set(yeturns 1 if the bit is set, 0 otherwise.

All other functions return 1 for success, O on error. The error codes can be obtained by
ERR_get_erro(3).

SEE ALSO
bn(3), BN_num_byte3), BN_add3)

HISTORY
BN_set_bit() BN_clear_bit() BN_is_bit_set()BN_mask_bits()BN_Ishift() BN_Ishift1() BN_rshift()
andBN_rshift1()are available in all versions of SSLeay and OpenSSL.

0.9.7c 2000-02-24 159

BN_swap(3) OpenSSL

NAME
BN_swap — exchange BIGNUMs

SYNOPSIS
#include <openssl/bn.h>

void BN_swap(BIGNUM *a, BIGNUM *b);

DESCRIPTION
BN_swap(exchanges the values aandb.

bn(3)

HISTORY
BN_swap was added in OpenSSL 0.9.7.

160 2000-11-26

BN_swap(3)

0.9.7¢c

BN_zero(3) OpenSSL BN_zero(3)

NAME
BN_zero, BN_one, BN_value_one, BN_set_word, BN_get word — BIGNUM assignment operations

SYNOPSIS
#include <openssl/bn.h>

int BN_zero(BIGNUM *a);

int BN_one(BIGNUM *a);

const BIGNUM *BN_value_one(void);

int BN_set word(BIGNUM *a, unsigned long w);
unsigned long BN_get word(BIGNUM *a);

DESCRIPTION
BN_zero() BN_one()and BN_set word(eta to the values 0, 1 and respectively. BN_zero()and
BN_one()are macros.

BN_value_one(jeturns aBIGNUM constant of value 1. This constant is useful for use in comparisons
and assignment.

BN_get word(yeturnsa, if it can be represented as an unsigned long.

RETURN VALUES
BN_get word(yeturns the valua, and OXxffffffffL if a cannot be represented as an unsigned long.

BN_zero() BN_one()andBN_set_word(yeturn 1 on success, 0 otherwidN_value_one()eturns the
constant.

BUGS
Someone might change the constant.

If a BIGNUM is equal to OXffffffffL it can be represented as an unsigned long but this value is also
returned on error.

SEE ALSO
bn(3), BN_bn2bin(3)

HISTORY
BN_zero() BN_one()and BN_set_word()are available in all versions of SSLeay and OpenSSL.
BN_value_one@ndBN_get word(vere added in SSLeay 0.8.

BN_value_one(jvas changed to return a true coBE&SNUM * in OpenSSL 0.9.7.

0.9.7c 2002-07-18 161

buffer(3) OpenSSL buffer(3)

NAME
BUF_MEM_new, BUF_MEM_free, BUF_MEM_grow, BUF_strdup — simple character arrays struc-
ture

SYNOPSIS
#include <openssl/buffer.h>

BUF_MEM *BUF_MEM_new(void);

void BUF_MEM_ free(BUF_MEM *a);

int BUF_MEM_grow(BUF_MEM *str, int len);
char * BUF_strdup(const char *str);

DESCRIPTION
The buffer library handles simple character arrays. Buffers are used for various purposes in the library,
most notably memory BIOs.

The library uses thBUF_MEM structure defined in buffer.h:
typedef struct buf_mem_st

{
int length; [* current number of bytes */
char *data;
int max; [* size of buffer */

} BUF_MEM,;

length is the current size of the buffer in bytesax is the amount of memory allocated to the buffer.
There are three functions which handle these and one “miscellaneous” function.

BUF_MEM_new(gllocates a new buffer of zero size.

BUF_MEM _free()frees up an already existing buffer. The data is zeroed before freeing up in case the
buffer contains sensitive data.

BUF_MEM_grow()changes the size of an already existing bufféeio Any data already in the buffer
is preserved if it increases in size.

BUF_strdup()copies a null terminated string into a block of allocated memory and returns a pointer to
the allocated block. Unlike the standard C libratsdup()this function use©PENSSL_malloc@nd

so should be used in preference to the standard libtalyp()because it can be used for memory leak
checking or replacing thmalloc() function.

The memory allocated froRUF_strdup()should be freed up using tPENSSL_freefunction.

RETURN VALUES
BUF_MEM_new(yeturns the buffer aiULL on error.

BUF_MEM _free()has no return value.
BUF_MEM_grow()returns zero on error or the new size (e@).

SEE ALSO
bio (3)

HISTORY
BUF_MEM_new() BUF_MEM_free(JandBUF_MEM_grow()are available in all versions of SSLeay
and OpenSSIBUF_strdup()was added in SSLeay 0.8.

162 2000-09-20 0.9.7c

crypto(3) OpenSSL crypto(3)

NAME
crypto — OpenSSL cryptographic library

SYNOPSIS

DESCRIPTION
The OpenSSlcrypto library implements a wide range of cryptographic algorithms used in various
Internet standards. The services provided by this library are used by the OpenSSL implementations of
SSL, TLS and S/MIME, and they have also been used to imple®®Ht OpenPGP, and other crypto-
graphic standards.

OVERVIEW
libcrypto consists of a number of sub-libraries that implement the individual algorithms.

The functionality includes symmetric encryption, public key cryptography and key agreement, certifi-
cate handling, cryptographic hash functions and a cryptographic pseudo-random number generator.

SYMMETRIC CIPHERS
blowfish(3), cast(3), des(3), idea(3), rc2(3), rc4 (3), rc5(3)
PUBLIC KEY CRYPTOGRAPHY AND KEY AGREEMENT
dsa(3), dh(3),rsa(3)
CERTIFICATES
x509(3), x509v3(3)
AUTHENTICATION CODES HASH FUNCTIONS
hmac(3), md2(3), md4(3), md5(3), mdc2(3), ripemd(3), sha(3)

AUXILIARY FUNCTIONS

err (3), thread<3), rand(3), OPENSSL_VERSION_NUMBER
INPUT/OUTPUT, DATA ENCODING

asni(3), bio (3), evp(3), pem(3), pkcs7(3), pkcs1a3)
INTERNAL FUNCTIONS

bn(3), buffer(3), lhash(3), objectH3), stack(3), txt_db(3)

NOTES
Some of the newer functions follow a naming convention using the nulserdl. For example the
functions:

int X509 CRL_addO_revoked(X509 CRL *crl, X509 REVOKED *rev);
int X509 addl _trust_object(X509 *x, ASN1_OBJECT *obj);

The 0 version uses the supplied structure pointer directly in the parent and it will be freed up when the
parent is freed. In the above examplewould be freed butev would not.

The 1 function uses a copy of the supplied structure pointer (or in some cases increases its link count)
in the parent and so botk éndobj above) should be freed up.

SEE ALSO
openss(1), ssl(3)

0.9.7c 2002-10-09 163

CRYPTO_set_ex_data(3) OpenSSL CRYPTO_set_ex_data(3)

NAME

CRYPTO_set_ex_data, CRYPTO_get _ex_data — internal application specific data functions

SYNOPSIS

int CRYPTO_set_ex_data(CRYPTO_EX_ DATA *r, int idx, void *arg);
void *CRYPTO_get_ex_data(CRYPTO_EX_ DATA *r, int idx);

DESCRIPTION

Several OpenSSL structures can have application specific data attached to them. These functions are
used internally by OpenSSL to manipulate application specific data attached to a specific structure.

These functions should only be used by applications to manipORY®TO_EX_DATA structures
passed to the new_func(), free func() and dup_func() callbacks: as passed to
RSA get_ex_new_index() for example.

CRYPTO_set_ex_data() is used to set application specific data, the data is supplied anglparame-
ter and its precise meaning is up to the application.

CRYPTO_get ex_data() is used to retrieve application specific data. The data is returned to the appli-
cation, this will be the same value as supplied to a preGRY$TO set_ex_data() call.

RETURN VALUES

CRYPTO_set_ex_data() returns 1 on success or 0 on failure.

CRYPTO_get ex_data() returns the application data or O on failure. 0 may also be valid application
data but currently it can only fail if given an invaittk parameter.

On failure an error code can be obtained fEBRR_get_erro(3).

SEE ALSO

RSA_get ex_new_ind@), DSA_get ex_new_indéX), DH_get ex new_ind€8)

HISTORY

164

CRYPTO_set_ex_datahdCRYPTO_get ex_datdfave been available since SSLeay 0.9.0.

2000-01-30 0.9.7c

d2i_ASN1_OBJECT(3) OpenSSL d2i_ASN1_OBJECT(3)

NAME
d2i_ASN1_OBJECT, i2d_ASN1_OBJECT - ASN1 OBJECT IDENTIFIER functions

SYNOPSIS
#include <openssl/objects.h>
ASN1 OBJECT *d2i_ASN1 OBJECT(ASN1 OBJECT **a, unsigned char **pp, long length);
inti2d_ASN1 OBJECT(ASN1 OBJECT *a, unsigned char **pp);
DESCRIPTION
These functions decode and encod@®&KN1 OBJECT IDENTIFIER

Othewise these behave in a similar wayd® X509()andi2d_X509()described in thel2i X5093)
manual page.

SEE ALSO
d2i_X5093)

HISTORY
TBA

0.9.7c 2002-10-09 165

d2i_DHparams(3) OpenSSL d2i_DHparams(3)

NAME
d2i_DHparams, i2d_DHparams — PKCS#3 DH parameter functions.

SYNOPSIS
#include <openssl/dh.h>

DH *d2i_DHparams(DH **a, unsigned char **pp, long length);
inti2d_DHparams(DH *a, unsigned char **pp);

DESCRIPTION

These functions decode and encode PKC®#B parameters using the DHparameter structure
described in PKCS#3.

Othewise these behave in a similar wayd® X509()andi2d_X509()described in thel2i X5093)
manual page.

SEE ALSO
d2i_X5093)

HISTORY
TBA

166 2002-10-09 0.9.7c

d2i_DSAPublicKey(3) OpenSSL d2i_DSAPublicKey(3)

NAME
d2i_DSAPublicKey, i2d_DSAPublicKey, d2i DSAPrivateKey, i2d_DSAPrivateKey, d2i DSA PUB-
KEY, i2d_DSA_PUBKEY, d2i DSA_SIG, i2d_DSA_SIG - DSA key encoding and parsing functions.

SYNOPSIS
#include <openssl/dsa.h>

DSA * d2i_DSAPublickey(DSA **a, const unsigned char **pp, long length);
inti2d_DSAPublicKey(const DSA *a, unsigned char **pp);

DSA * d2i_DSA_PUBKEY(DSA **a, const unsigned char **pp, long length);
inti2d_DSA PUBKEY(const DSA *a, unsigned char **pp);

DSA * d2i_DSAPrivateKey(DSA **a, const unsigned char **pp, long length);
inti2d_DSAPrivateKey(const DSA *a, unsigned char **pp);

DSA * d2i_DSAparams(DSA **a, const unsigned char **pp, long length);
inti2d_DSAparams(const DSA *a, unsigned char **pp);

DSA * d2i_DSA_SIG(DSA_SIG **a, const unsigned char **pp, long length);
inti2d_DSA_SIG(const DSA_SIG *a, unsigned char **pp);

DESCRIPTION
d2i_DSAPublicKef) andi2d_DSAPublicKey(decode and encode tlEsA public key components
structure.

d2i_DSA PUKEY(andi2d_DSA PUKEY(Hdecode and encode @sA public key using a Subject-
PublicKeylnfo (certificate public key) structure.

d2i_DSAPrivateKey(J2d_DSAPrivateKey(jlecode and encode tbSA private key components.

d2i_DSAparams()i2d_DSAparams(decode and encode thESA parameters using Bss-Parms
structure as defined RFC2459

d2i_DSA SIG()i2d_DSA_SIG(decode and encodelsA signature using &ss-Sig-Valuestructure
as defined iIRFC2459

The usage of all of these functions is similar to ¢ X509() and i2d_X509() described in the
d2i_X5093) manual page.

NOTES
The DSA structure passed to the private key encoding functions should have all the private key compo-
nents present.

The data encoded by the private key functions is unencrypted and therefore offers no private key secu-
rity.

The DSA_PUBKEY functions should be used in preference to B@APublicKey functions when
encoding public keys because they use a standard format.

The DSAPublicKey functions use an non standard format the actual data encoded depends on the value
of the write_params field of thea key parameter. Ifnvrite_params is zero then only theub_key

field is encoded as dNTEGER . If write_paramsis 1 then &SEQUENCE consisting of the, g, g and
pub_keyrespectively fields are encoded.

The DSAPrivateKey functions also use a non standard structure consiting consistingE@WENCE
containing theo, q, g andpub_key andpriv_key fields respectively.

SEE ALSO
d2i_X5093)

HISTORY
TBA

0.9.7c 2002-10-09 167

d2i_PKCS8PrivateKey(3) OpenSSL d2i_PKCS8PrivateKey(3)

NAME
d2i_PKCS8PrivateKey bio, d2i PKCS8PrivateKey fp, i2d_PKCS8PrivateKey bio, i2d_PKCS8Pri-
vateKey_fp, i2d_PKCS8PrivateKey_nid_bio, i2d_PKCS8PrivateKey nid_fp — PKCS#8 format private
key functions
SYNOPSIS
#include <openssl/evp.h>

EVP_PKEY *d2i_PKCS8PrivateKey bio(BIO *bp, EVP_PKEY **x, pem_password_cb *cb, void *u);
EVP_PKEY *d2i_PKCS8PrivateKey fp(FILE *fp, EVP_PKEY **x, pem_password_cb *cb, void *u);

inti2d_PKCS8PrivateKey_bio(BIO *bp, EVP_PKEY *x, const EVP_CIPHER *enc,
char *kstr, int klen,
pem_password_cb *cb, void *u);
inti2d_PKCS8PrivateKey_ fp(FILE *fp, EVP_PKEY *Xx, const EVP_CIPHER *enc,
char *kstr, int klen,
pem_password_cb *cb, void *u);
int i2d_PKCS8PrivateKey_nid_bio(BIO *bp, EVP_PKEY *x, int nid,
char *kstr, int klen,
pem_password_cb *cb, void *u);
inti2d_PKCS8PrivateKey_nid_fp(FILE *fp, EVP_PKEY *x, int nid,
char *kstr, int klen,
pem_password_cb *cb, void *u);
DESCRIPTION

The PKCS#8 functions encode and decode private keys in PKCS#8 format using both PKCS#5 v1.5
and PKCS#5 v2.0 password based encryption algorithms.

Other than the use &fER as opposed tBEM these functions are identical to the correspon@ibiy
function as described in tipem(3) manual page.

NOTES
Before using these functio®@penSSL_add_all_algorithn(3) should be called to initialize the internal

algorithm lookup tables otherwise errors about unknown algorithms will occur if an attempt is made to
decrypt a private key.

These functions are currently the only way to store encrypted private keyD&sirigrmat.

Currently all the functions use BIOs BILE pointers, there are no functions which work directly on
memory: this can be readily worked around by converting the buffers to memory BIOs, see
BIO_s_men(3) for detalils.

SEE ALSO
pem(3)

168 2002-10-09 0.9.7c

d2i_RSAPublicKey(3) OpenSSL d2i_RSAPublicKey(3)

NAME

d2i_RSAPublicKey, i2d_RSAPublicKey, d2i RSAPrivateKey, i2d_RSAPrivateKey, d2i RSA PUB-
KEY, i2d_RSA_PUBKEY, i2d_Netscape RSA, d2i_Netscape RSA - RSA public and private key
encoding functions.

SYNOPSIS

#include <openssl/rsa.h>

RSA * d2i_RSAPublickey(RSA **a, unsigned char **pp, long length);
inti2d_RSAPublicKey(RSA *a, unsigned char **pp);

RSA * d2i_RSA_PUBKEY(RSA **a, unsigned char **pp, long length);
inti2d_RSA PUBKEY(RSA *a, unsigned char **pp);

RSA * d2i_RSAPrivateKey(RSA **a, unsigned char **pp, long length);
inti2d_RSAPrivateKey(RSA *a, unsigned char **pp);

inti2d_Netscape RSA(RSA *a, unsigned char **pp, int (*cb)());

RSA * d2i_Netscape RSA(RSA **a, unsigned char **pp, long length, int (*cb)());

DESCRIPTION

d2i_RSAPublickey@ndi2d_RSAPublicKey@ecode and encode a PKCS#1 RSAPublicKey structure.

d2i_RSA PUKEY@ndi2d_RSA PUKEY@ecode and encode RSA public key using a SubjectPub-
licKeylnfo (certificate public key) structure.

d2i_RSAPrivateKey()2d_RSAPrivateKey@ecode and encode a PKCS#1 RSAPrivateKey structure.
d2i_Netscape_RSA(Rd_Netscape_RSAdecode and encode BSA private key inNET format.

The usage of all of these functions is similar to ¢ X509() and i2d_X509() described in the
d2i_X5093) manual page.

NOTES

TheRSA structure passed to the private key encoding functions should have all the PKCS#1 private key
components present.

The data encoded by the private key functions is unencrypted and therefore offers no private key secu-
rity.

The NET format functions are present to provide compatibility with certain very old software. This for-
mat has some severe security weaknesses and should be avoided if possible.

SEE ALSO

d2i_X5093)

HISTORY

0.9.7c

TBA

2002-10-09 169

d2i_SSL_SESSION(3) OpenSSL d2i_SSL_SESSION(3)

NAME
d2i_SSL_SESSION, i2d_SSL_SESSION - convert SSL_SESSION object from/to ASN1 representa-
tion
SYNOPSIS
#include <openssl/ssl.h>

SSL_SESSION *d2i_SSL_SESSION(SSL_SESSION **a, unsigned char **pp, long length);
inti2d_SSL_SESSION(SSL_SESSION *in, unsigned char **pp);

DESCRIPTION
d2i_SSL_SESSION{)ansforms the externalSN1 representation of aSSL/TLS session, stored as
binary data at locatiopp with lengthlength, into anSSL_SESSIONbject.

i2d_SSL_SESSIONgansforms thesSL_SESSIONobjectin into the ASN1 representation and stores it
into the memory location pointed to pp. The length of the resultingSN1 representation is returned.
If pp is theNULL pointer, only the length is calculated and returned.

NOTES
The SSL_SESSIONbbject is built from severahalloc(ed parts, it can therefore not be moved, copied
or stored directly. In order to store session data on disk or into a database, it must be transformed into a
binary ASN1 representation.

When usingd2i_SSL_SESSIONhe SSL_SESSIONobject is automatically allocated. The reference
count is 1, so that the session must be explicitly removed ®&$ig SESSION_fré®), unless the
SSL_SESSIONobject is completely taken over, when being called insidegtesession_cb(jsee
SSL_CTX sess_set_get(8)).
SSL_SESSIONbbjects keep internal link information about the session cache list, when being inserted
into oneSSL_CTXobject’s session cache. OB8L_SESSIONobject, regardless of its reference count,
must therefore only be used with oB®L_CTXobject (and th&SL objects created from th&SL_CTX
object).
When using2d_SSL_SESSIONghe memory location pointed to Ipy must be large enough to hold
the binary representation of the session. There is no known limit on the size of the AgHtegpre-
sentation, so the necessary amount of space should be obtained by firstizallBgL_SESSION()
with pp=NULL, and obtain the size needed, then allocate the memory an®2daSL_SESSION()
again.

RETURN VALUES
d2i_SSL_SESSION@turns a pointer to the newly allocatesl._ SESSIONbject. In case of failure the
NULL-pointer is returned and the error message can be retrieved from the error stack.

i2d_SSL_SESSION(gturns the size of thaSN1 representation in bytes. When the session is not
valid, O is returned and no operation is performed.

SEE ALSO
ssl(3), SSL_SESSION_fré®), SSL_CTX_sess_set_get(8p

170 2001-10-12 0.9.7c

d2i_X509(3) OpenSSL d2i_X509(3)

NAME
d2i_X509, i2d_X509, d2i_ X509 bio, d2i_ X509 fp, i2d_X509 bio, i2d_X509 fp — X509 encode and
decode functions

SYNOPSIS
#include <openssl/x509.h>

X509 *d2i_X509(X509 **px, unsigned char **in, int len);
inti2d_X509(X509 *x, unsigned char **out);
X509 *d2i_X509_bio(BIO *bp, X509 **x);
X509 *d2i_X509_fp(FILE *fp, X509 **x);
inti2d_X509 bio(X509 *x, BIO *bp);
inti2d_X509 fp(X509 *x, FILE *fp);
DESCRIPTION

The X509 encode and decode routines encode and paxd&®aistructure, which represents an X509
certificate.

d2i_X509() attempts to decodken bytes at*out. If successful a pointer to th¥509 structure is
returned. If an error occurred th&iuLL is returned. Ifpx is notNULL then the returned structure is
written to*px. If *px is notNULL then it is assumed th&bx contains a valick509 structure and an
attempt is made to reuse it. If the call is succedsiutl is incremented to the byte following the parsed
data.

i2d_X509()encodes the structure pointed tosbinto DER format. If out is notNULL is writes the
DER encoded data to the buffer *atut, and increments it to point after the data just written. If the
return value is negative an error occurred, otherwise it returns the length of the encoded data.

For OpenSSL 0.9.7 and later*ibut is NULL memory will be allocated for a buffer and the encoded
data written to it. In this cageut is not incremented and it points to the start of the data just written.

d2i_X509 bio(Js similar tod2i_X509()except it attempts to parse data frBrd@ bp.
d2i_X509 fp()s similar tod2i_X509()except it attempts to parse data frBiE pointerfp.

i2d_X509_bio()s similar toi2d_X509()except it writes the encoding of the structur® BIO bp and
it returns 1 for success and 0 for failure.

i2d_X509 fp()s similar toi2d_X509()except it writes the encoding of the structurt® BIO bp and it
returns 1 for success and 0 for failure.

NOTES
The letters andd in for examplei2d_X509 stand for “internal” (that is an internal C structure) and
“DER". So thati2d_X509converts from internal tDER.

The functions can also understaB®ER forms.

The actual X509 structure passed2d_X509()must be a valid populateds509 structure it camot
simply be fed with an empty structure such as that return&®09 _new().

The encoded data is in binary form and may contain embedded zeroes. Therefat& gonters or
BlOs should be opened in binary mode. Functions sustrlas() will not return the correct length of
the encoded structure.

The ways thatin and*out are incremented after the operation can trap the unwary. Seeathe-
INGS section for some common errors.

The reason for the auto increment behaviour is to reflect a typical usag&bfunctions: after one
structure is encoded or decoded another will processed after it.

EXAMPLES
Allocate and encode thgER encoding of an X509 structure:

int len;
unsigned char *buf, *p;

len =i2d_X509(x, NULL);

0.9.7c 2002-11-14 171

d2i_X509(3) OpenSSL

buf = OPENSSL_malloc(len);

if (buf == NULL)
/* error */

p = buf;
i2d_X509(x, &p);

If you are using OpenSSL 0.9.7 or later then this can be simplified to:

int len;
unsigned char *buf;

buf = NULL;
len = i2d_X509(x, &buf);

if (len < 0)
/* error */

Attempt to decode a buffer:
X509 *x;
unsigned char *buf, *p;
int len;
/* Something to setup buf and len */

p = buf;
x = d2i_X509(NULL, &p, len);
if (x == NULL)

/* Some error */
Alternative technique:
X509 *x;
unsigned char *buf, *p;
int len;
/* Something to setup buf and len */
p = buf;
X = NULL,

if(!d2i_X509(&x, &p, len))
/* Some error */

WARNINGS

d2i_X509(3)

The use of temporary variable is mandatory. A common mistake is to attempt to use a buffer directly as

follows:

int len;
unsigned char *buf;

len =i2d_X509(x, NULL);
buf = OPENSSL_malloc(len);

if (buf == NULL)
/* error */

i2d_X509(x, &buf);
/* Other stuff ... */
OPENSSL_free(buf);

This code will result irbuf apparently containing garbage because it was incremented after the call to
point after the data just written. Alsbuf will no longer contain the pointer allocated by

OPENSSL_malloc() and the subsequent call ®PENSSL_free() may well crash.

2002-11-14

0.9.7¢c

d2i_X509(3) OpenSSL d2i_X509(3)

BUGS

The auto allocation feature (settingfthio NULL) only works on OpenSSL 0.9.7 and later. Attempts to
use it on earlier versions will typically cause a segmentation violation.

Another trap to avoid is misuse of the argument tal2i_X509():
X509 *x;

if (d2i_X509(&x, &p, len))
/* Some error */

This will probably crash somewhere d@i_X509(). The reason for this is that the variaklées unini-
tialized and an attempt will be made to interpret its (invalid) value %6@8 structure, typically caus-
ing a segmentation violation. Xfis set toNULL first then this will not happen.

In some versions of OpenSSL the “reuse” behavioud2if X509()when*px is valid is broken and
some parts of the reused structure may persist if they are not present in the new one. As a result the use
of this “reuse” behaviour is strongly discouraged.

i2d_X509()will not return an error in many versions of OpenSSL, if mandatory fields are not initialized
due to a programming error then the encoded structure may contain invalid data or omit the fields
entirely and will not be parsed i X509() This may be fixed in future so code should not assume
thati2d_X509()will always succeed.

RETURN VALUES

d2i_X509() d2i_X509 bio()and d2i_X509 fp(return a validX509 structure orNULL if an error
occurs. The error code that can be obtaineBRR_get_erro(3).

i2d_X509() i2d_X509 bio(andi2d_X509 fp(return a the number of bytes successfully encoded or a
negative value if an error occurs. The error code can be obtairieRRyget_errof3).

i2d_X509 bio(andi2d_X509 fp(returns 1 for success and 0 if an error occurs The error code can be
obtained byERR_get_errof3).

SEE ALSO

ERR_get_erro(3)

HISTORY

0.9.7c

d2i_X509, i2d_X509, d2i_ X509 bio, d2i_X509 fp, i2d_X509 bio and i2d_X509 fp are available in
all versions of SSLeay and OpenSSL.

2002-11-14 173

d2i_X509_ALGOR(3) OpenSSL d2i_X509_ALGOR(3)

NAME
d2i_X509 ALGOR, i2d_X509 ALGOR - Algorithmldentifier functions.

SYNOPSIS
#include <openssl/x509.h>

X509 ALGOR *d2i_ X509 ALGOR(X509 ALGOR **a, unsigned char **pp, long length);
inti2d_X509 ALGOR(X509_ ALGOR *a, unsigned char **pp);

DESCRIPTION
These functions decode and encodeX889 ALGOR structure which is equivalent to tiAdgorith-
midentifier structure.

Othewise these behave in a similar wayd® X509()andi2d_X509()described in thel2i X5093)
manual page.

SEE ALSO
d2i_X5093)

HISTORY
TBA

174 2002-10-09 0.9.7c

d2i_X509_CRL(3) OpenSSL d2i_X509_CRL(3)

NAME
d2i_X509_CRL, i2d_X509_CRL, d2i_X509_CRL_bio, d2i_509 CRL_fp, i2d_X509_CRL_bio,
i2d_X509 CRL_fp — PKCS#10 certificate request functions.

SYNOPSIS
#include <openssl/x509.h>

X509 CRL *d2i_ X509 CRL(X509 CRL **a, unsigned char **pp, long length);
inti2d_X509 CRL(X509_ CRL *a, unsigned char **pp);

X509_CRL *d2i_X509_CRL_bio(BIO *bp, X509 _CRL **x);
X509_CRL *d2i_X509_CRL_fp(FILE *fp, X509_CRL **x);

inti2d_X509 CRL_hio(X509_CRL *x, BIO *bp);
int i2d_X509_CRL_fp(X509_CRL *x, FILE *fp);

DESCRIPTION
These functions decode and encode an X&RI9(certificate revocation list).

Othewise the functions behave in a similar wayd@_ X509() and i2d_X509() described in the
d2i_X5093) manual page.

SEE ALSO
d2i_X5093)

HISTORY
TBA

0.9.7c 2002-10-09 175

d2i_X509_NAME(3) OpenSSL d2i_X509_NAME(3)

NAME
d2i_X509 NAME, i2d_X509 NAME - X509 NAME encoding functions

SYNOPSIS
#include <openssl/x509.h>

X509 NAME *d2i_ X509 NAME(X509 NAME **a, unsigned char **pp, long length);
inti2d_X509 NAME(X509_NAME *a, unsigned char **pp);

DESCRIPTION
These functions decode and encodX&89 NAME structure which is the the same as@metype
defined inRFC2459(and elsewhere) and used for example in certificate subject and issuer names.

Othewise the functions behave in a similar wayd@_ X509() and i2d_X509() described in the
d2i_X5093) manual page.

SEE ALSO
d2i_X5093)

HISTORY
TBA

176 2002-10-09 0.9.7c

d2i_X509_REQ(3) OpenSSL d2i_X509_REQ(3)

NAME
d2i_X509 REQ, i2d_X509_REQ, d2i_X509 REQ_bio, d2i_X509_REQ_fp, i2d_X509 REQ_bio,
i2d_X509 REQ_fp — PKCS#10 certificate request functions.

SYNOPSIS
#include <openssl/x509.h>

X509 REQ *d2i_X509 REQ(X509 REQ **a, unsigned char **pp, long length);
inti2d_X509 REQ(X509_REQ *a, unsigned char **pp);

X509 _REQ *d2i_X509_REQ_bio(BIO *bp, X509 _REQ **x);
X509 _REQ *d2i_X509_REQ_fp(FILE *fp, X509_REQ **x);
inti2d_X509 REQ bio(X509 REQ *x, BIO *bp);
inti2d_X509_REQ_fp(X509_REQ *x, FILE *fp);

DESCRIPTION
These functions decode and encode a PKCS#10 certificate request.

Othewise these behave in a similar wayd® X509()andi2d_X509()described in thel2i X5093)
manual page.

SEE ALSO
d2i_X5093)

HISTORY
TBA

0.9.7c 2002-10-09 177

d2i_X509_SIG(3) OpenSSL d2i_X509_SIG(3)

NAME
d2i_X509 SIG, i2d_X509_SIG - Digestinfo functions.

SYNOPSIS
#include <openssl/x509.h>

X509_SIG *d2i_X509_SIG(X509_ SIG **a, unsigned char **pp, long length);
inti2d_X509_ SIG(X509_SIG *a, unsigned char **pp);

DESCRIPTION
These functions decode and encode an X509_SIG structure which is equivalemitreghiafo struc-
ture defined in PKCS#1 and PKCS#7.

Othewise these behave in a similar wayd® X509()andi2d_X509()described in thel2i X5093)
manual page.

SEE ALSO
d2i_X5093)

HISTORY
TBA

178 2002-10-09 0.9.7c

des(3) OpenSSL des(3)

NAME

DES_random_key, DES_set key, DES key sched, DES_set key checked, DES_set key unchecked,
DES_set_odd_parity, DES_is_weak key, DES_ecb_encrypt, DES_ecb2_encrypt, DES_ecb3_encrypt,
DES_ncbc_encrypt, DES_cfb_encrypt, DES_ofb_encrypt, DES_pcbc_encrypt, DES cfb64_encrypt,
DES_ofb64 encrypt, DES_ xchc_encrypt, DES_ede2 cbc_encrypt, DES_ede2 cfb64 encrypt,
DES_ede2_ ofb64_encrypt, DES_ede3 _chc_encrypt, DES_ede3 cbcm_encrypt,
DES_ede3 cfb64 encrypt, DES ede3 ofb64 encrypt, DES cbc cksum, DES quad_cksum,
DES_string_to_key, DES_string_to_2keys, DES_fcrypt, DES_crypt, DES_enc_read, DES_enc_write —
DES encryption

SYNOPSIS
#include <openssl/des.h>

void DES_random_key(DES_cblock *ret);

int DES_set_key(const DES _cblock *key, DES_key schedule *schedule);
int DES_key_sched(const_ DES_cblock *key, DES_key schedule *schedule);
int DES_set_key checked(const DES_cblock *key,

DES_key schedule *schedule);
void DES_set_key unchecked(const DES_cblock *key,

DES_key schedule *schedule);

void DES_set_odd_parity(DES_cblock *key);
int DES_is_weak key(const_ DES_cblock *key);

void DES_ech_encrypt(const DES_cblock *input, DES_cblock *output,
DES_key_ schedule *ks, int enc);

void DES_ech2_encrypt(const_ DES_cblock *input, DES_cblock *output,
DES_key schedule *ks1, DES key schedule *ks2, int enc);

void DES_ech3_encrypt(const_ DES_cblock *input, DES_cblock *output,
DES_key schedule *ks1, DES key_schedule *ks2,
DES_key schedule *ks3, int enc);

void DES_nchc_encrypt(const unsigned char *input, unsigned char *output,
long length, DES_key schedule *schedule, DES_cblock *ivec,
int enc);

void DES_cfb_encrypt(const unsigned char *in, unsigned char *out,
int numbits, long length, DES_key_schedule *schedule,
DES_cblock *ivec, int enc);

void DES_ofb_encrypt(const unsigned char *in, unsigned char *out,
int numbits, long length, DES_key_schedule *schedule,
DES_cblock *ivec);

void DES_pchc_encrypt(const unsigned char *input, unsigned char *output,
long length, DES_key schedule *schedule, DES_cblock *ivec,
int enc);

void DES_cfb64_encrypt(const unsigned char *in, unsigned char *out,
long length, DES_key schedule *schedule, DES_cblock *ivec,
int *num, int enc);

void DES_ofb64_encrypt(const unsigned char *in, unsigned char *out,
long length, DES_key schedule *schedule, DES_cblock *ivec,
int *num);

void DES_xcbc_encrypt(const unsigned char *input, unsigned char *output,
long length, DES_key schedule *schedule, DES_cblock *ivec,
const_ DES_cblock *inw, const DES_cblock *outw, int enc);

0.9.7c 2001-10-25 179

des(3) OpenSSL des(3)

void DES_ede2_cbc_encrypt(const unsigned char *input,
unsigned char *output, long length, DES_key_schedule *ks1,
DES_key schedule *ks2, DES_cblock *ivec, int enc);
void DES_ede2_cfb64 encrypt(const unsigned char *in,
unsigned char *out, long length, DES_key_schedule *ks1,
DES_key schedule *ks2, DES_cblock *ivec, int *num, int enc);
void DES_ede2_ofb64_encrypt(const unsigned char *in,
unsigned char *out, long length, DES_key_schedule *ks1,
DES_key schedule *ks2, DES_cblock *ivec, int *num);

void DES_ede3 cbc_encrypt(const unsigned char *input,
unsigned char *output, long length, DES_key_schedule *ks1,
DES_key schedule *ks2, DES key_schedule *ks3, DES_cblock *ivec,
int enc);

void DES_ede3_cbcm_encrypt(const unsigned char *in, unsigned char *out,
long length, DES_key schedule *ks1, DES key_ schedule *ks2,
DES_key schedule *ks3, DES_cblock *ivecl, DES_cblock *ivec2,
int enc);

void DES_ede3 cfb64 encrypt(const unsigned char *in, unsigned char *out,
long length, DES_key schedule *ks1, DES key_ schedule *ks2,
DES_key schedule *ks3, DES_cblock *ivec, int *num, int enc);

void DES_ede3_ofb64 _encrypt(const unsigned char *in, unsigned char *out,
long length, DES_key schedule *ks1,
DES_key schedule *ks2, DES key_schedule *ks3,
DES_cblock *ivec, int *num);

DES_LONG DES_cbc_cksum(const unsigned char *input, DES_cblock *output,
long length, DES_key schedule *schedule,
const_DES_cblock *ivec);

DES_LONG DES_quad_cksum(const unsigned char *input, DES_cblock output(],
long length, int out_count, DES_cblock *seed);

void DES_string_to_key(const char *str, DES_cblock *key);

void DES_string_to_2keys(const char *str, DES_cblock *keyl,
DES_cblock *key?2);

char *DES_fcrypt(const char *buf, const char *salt, char *ret);
char *DES_crypt(const char *buf, const char *salt);

int DES_enc_read(int fd, void *buf, int len, DES_key schedule *sched,
DES_cblock *iv);

int DES_enc_write(int fd, const void *buf, int len,
DES_key schedule *sched, DES_cblock *iv);

DESCRIPTION
This library contains a fast implementation of €S encryption algorithm.

There are two phases to the us®Bgf encryption. The first is the generation 0bES_key schedule

from a key, the second is the actual encryptiorDES key is of typeDES_cblock. This type is consists

of 8 bytes with odd parity. The least significant bit in each byte is the parity bit. The key schedule is
an expanded form of the key; it is used to speed the encryption process.

DES_random_key(@enerates a random key. TRBNG must be seeded prior to using this function
(seerand(3)). If thePRNGcould not generate a secure key, 0 is returned.

Before aDESkey can be used, it must be converted into the architecture dep@&ttenkey schedule
via theDES_set_key checkedf)DES_set key unchecketi(hction.

DES_set_key checkedjll check that the key passed is of odd parity and is not a week or semi-weak
key. If the parity is wrong, then -1 is returned. If the key is a weak key, then -2 is returned. If an
error is returned, the key schedule is not generated.

DES_set_key(yvorks like DES_set_key checkedf{)the DES check keflag is non-zero, otherwise
like DES set key unchecked(). These functions are available for compatibility; it is recommended to
use a function that does not depend on a global variable.

180 2001-10-25 0.9.7c

des(3)

0.9.7c

OpenSSL des(3)

DES_set_odd_parity§ets the parity of the passieslyto odd.

DES _is_weak dy()returns 1 is the passed key is a weak key, 0 if it is ok. The probability that a ran-
domly generated key is weak is 1/2°52, so it is not really worth checking for them.

The following routines mostly operate on an input and output stre@&$f cblocks.

DES_ecb_encrypt(ls the basicDES encryption routine that encrypts or decrypts a single 8-byte
DES_cblockin electronic code bookECB) mode. It always transforms the input data, pointed to by
input, into the output data, pointed to by thatputargument. If theencryptargument is non-zero
(DES_ENCRYPYJ, theinput (cleartext) is encrypted in to tleitput(ciphertext) using the key schedule
specified by theschedule argument, previously set vidDES set key If encrypt is zero
(DES_DECRYPYJ, theinput (now ciphertext) is decrypted into tlmutput (now cleartext). Input and
output may overlapDES_ecb_encryptfoes not return a value.

DES_ech3_encrypt@ncrypts/decrypts thimput block by using three-key Triple-DES encryption in
ECB mode. This involves encrypting the input wikil, decrypting with the key schedlk?, and then
encrypting withks3 This routine greatly reduces the chances of brute force breakibgSxdnd has
the advantage of Ksl, ks2andks3are the same, it is equivalent to just encryption usi@g mode
andkslas the key.

The macroDES_ech2_encryptfy provided to perform two-key Triple-DES encryption by udhsg
for the final encryption.

DES_ncbc_encrypt@ncrypts/decrypts using tha@pher-block-chaining(CBC) mode ofDES. If the
encryptargument is non-zero, the routine cipher-block-chain encrypts the cleartext data pointed to by
the input argument into the ciphertext pointed to by th#putargument, using the key schedule pro-
vided by thescheduleargument, and initialization vector provided by thec argument. If thdength
argument is not an integral multiple of eight bytes, the last block is copied to a temporary area and zero
filled. The output is always an integral multiple of eight bytes.

DES_xcbc_encrypt(s RSA's DESX mode ofDES. It usesinw andoutw to 'whiten’ the encryption.
inw andoutware secret (unlike the iv) and are as such, part of the key. So the key is sort of 24 bytes.
This is much better thabBC DES

DES_ede3 cbc_encryptifnplements outer tripl€BC DESencryption with three keys. This means
that eachDES operation inside th€BC mode is really arC=E(ks3,D(ks2,E(ks1,M))) . This
mode is used bgSL

The DES_ede2_cbc_encryptfhacro implements two-key Triple-DES by reusikgl for the final
encryption. C=E(ks1,D(ks2,E(ks1,M))) . This form of Triple-DES is used by tHrRSAREF
library.

DES_pcbc_encrypt@ncrypt/decrypts using the propagating cipher block chaining mode used by Ker-
beros v4. Its parameters are the sanieES _ncbc_encrypt()

DES_cfb_encrypt@ncrypt/decrypts using cipher feedback mode. This method takes an array of char-
acters as input and outputs and array of characters. It does not require any padding to 8 character
groups. Note: thévec variable is changed and the new changed value needs to be passed to the next
call to this function. Since this function runs a compleES ECBencryption pemumbits this func-

tion is only suggested for use when sending small numbers of characters.

DES_cfbh64_encryptfinplementsCFB mode ofDES with 64bit feedback. Why is this useful you ask?
Because this routine will allow you to encrypt an arbitrary number of bytes, no 8 byte padding. Each
call to this routine will encrypt the input bytes to output and then update ivec and hum. num contains
'how far’ we are though ivec. If this does not make much sense, read more about cfb mage—f

DES_ede3 cfb64 _encryptgnd DES_ede2 cfb64 encrypt{(}3 the same adPDES cfh64 encrypt()
except that Triple-DES is used.

DES_ofb_encrypt@ncrypts using output feedback mode. This method takes an array of characters as
input and outputs and array of characters. It does not require any padding to 8 character groups. Note:
theivecvariable is changed and the new changed value needs to be passed to the next call to this func-
tion. Since this function runs a compl&€S ECBencryption per numbits, this function is only sug-
gested for use when sending small numbers of characters.

DES_ofb64_encrypt{} the same a3ES cfb64_encrypt()sing Output Feed Back mode.

2001-10-25 181

des(3)

OpenSSL des(3)

DES_ede3 ofb64_encryptgnd DES_ede2 ofb64_encrypt{3 the same aPES ofb64 encrypt()
using Triple-DES.

The following functions are included in tHeeS library for compatibility with theMIT Kerberos
library.

DES_cbc_cksum@roduces an 8 byte checksum based on the input strea®B@iancryption). The
last 4 bytes of the checksum are returned and the complete 8 bytes are ptatedtimhis function is
used by Kerberos v4. Other applications shouldg)e_DigestIni(3) etc. instead.

DES_quad_cksum({$ a Kerberos v4 function. It returns a 4 byte checksum from the input bytes. The
algorithm can be iteratedver the input, depending oout_count 1, 2, 3 or 4 times. lfoutputis
non—-NULL, the 8 bytes generated by each pass are writtenuiyat.

The following are DES-based transformations:

DES_fcrypt()is a fast version of the Unorypt(3) function. This version takes only a small amount of
space relative to other fastypt() implementations. This is different to the normal crypt in that the
third parameter is the buffer that the return value is written into. It needs to be at least 14 bytes long.
This function is thread safe, unlike the normal crypt.

DES_crypt()is a faster replacement for the normal systeppt(). This function callDES_fcrypt()
with a static array passed as the third parameter. This emulates the normal non-thread safe semantics
of crypt(3).

DES_enc_write()writes len bytes to file descriptofd from buffer buf. The data is encrypted via
pcbc_encryp{default) usingschedfor the key andv as a starting vector. The actual data send ddwn
consists of 4 bytes (in network byte order) containing the length of the following encrypted data. The
encrypted data then follows, padded with random data out to a multiple of 8 bytes.

DES_enc_read(js used to reaten bytes from file descriptoid into bufferbbuf. The data being read
from fd is assumed to have come frddES_enc_write(and is decrypted usingchedfor the key
schedule andr for the initial vector.

Warning: The data format used BYES enc_write(aRndDES_enc_read(has a cryptographic weak-
ness: When asked to write more thasaXWRITE bytes,DES_enc_write(Jvill split the data into sev-

eral chunks that are all encrypted using the s&meSo don't use these functions unless you are sure
you know what you do (in which case you might not want to use them anyway). They cannot handle
non-blocking socketsDES_enc_read()ises an internal state and thus cannot be used on multiple files.

DES_rw_modeis used to specify the encryption mode to use WRES enc_read()and
DES_end_write(). If set tdES_PCBC_MODE(the default), DES pcbc_encrypt is used. If set to
DES_CBC_MODHDES chc_encrypt is used.

NOTES

BUGS

Single-keyDES is insecure due to its short key siZCB mode is not suitable for most applications;
seeDES_mode§r).

Theevp(3) library provides higher-level encryption functions.

DES_3cbc_encrypt{} flawed and must not be used in applications.
DES_chc_encrypt@oes not modifyvec; useDES_nchc_encrypt{hstead.

DES_cfb_encrypt@ndDES_ofb_encrypt(@perates on input of 8 bits. What this means is that if you

set numbits to 12, and length to 2, the first 12 bits will come from the 1st input byte and the low half of
the second input byte. The second 12 bits will have the low 8 bits taken from the 3rd input byte and the
top 4 bits taken from the 4th input byte. The same holds for output. This function has been imple-
mented this way because most people will be using a multiple of 8 and because once you get into
pulling bytes input bytes apart things get ugly!

DES_string_to_key(ls available for backward compatibility with th&iT library. New applications
should use a cryptographic hash function. The same appliBE®rstring_to_2key().

CONFORMING TO

182

ANSI X3.106
Thedeslibrary was written to be source code compatible withMhieKerberos library.

2001-10-25 0.9.7c

des(3) OpenSSL des(3)

SEE ALSO
crypt(3), des_mode&’), evp(3), rand(3)

HISTORY
In OpenSSL 0.9.7, all des_ functions were renamé&kE® to avoid clashes with older versions of lib-
des. Compatibility des_ functions are provided for a short while, as wetlypg). Declarations for
these are in <openssl/des_old.h>. There iBE® variant fordes_random_seed()rhis will happen to
other functions as well if they are deemed redunddes_(random_seed)st callsRAND_seed(and
is present for backward compatibility only), buggy or already scheduled for removal.

des_cbc_cksum() des_cbc_encrypt() des_ecb_encrypt() des_is_weak_key() des_key_sched()
des_pcbc_encrypt(Mes_quad_cksum@es_random_key@nddes_string_to_key@re available in the
MIT Kerberos librarydes_check key parity@es_fixup_key paritygnddes_is_weak keyére avail-
able in newer versions of that library.

des_set key checkedf)ddes_set key unchecked@re added in OpenSSL 0.9.5.

des_generate_random_block() des_init random_number_generator() des_new_random_key()
des_set random_generator_seedf)d des_set sequence_numbea()d des_rand_data(are used in
newer versions of Kerberos but are not implemented here.

des_random_key@enerated cryptographically weak random data in SSLeay and in OpenSSL prior
version 0.9.5, as well as in the originglr library.

AUTHOR
Eric Young (eay@cryptsoft.com). Modified for the OpenSSL project (http://www.openssl.org).

0.9.7c 2001-10-25 183

dh(3) OpenSSL dh(3)

NAME
dh - Diffie-Hellman key agreement

SYNOPSIS
#include <openssl/dh.h>
#include <openssl/engine.h>

DH * DH_new(void);
void DH_free(DH *dh);

int DH_size(const DH *dh);

DH * DH_generate_parameters(int prime_len, int generator,
void (*callback)(int, int, void *), void *cb_arg);
int DH_check(const DH *dh, int *codes);

int DH_generate_key(DH *dh);
int DH_compute_key(unsigned char *key, BIGNUM *pub_key, DH *dh);

void DH_set_default_method(const DH_METHOD *meth);
const DH_METHOD *DH_get_default_method(void);

int DH_set_method(DH *dh, const DH_METHOD *meth);
DH *DH_new_method(ENGINE *engine);

const DH_METHOD *DH_OpenSSL(void);

int DH_get_ex_new_index(long argl, char *argp, int (*new_func)(),
int (*dup_func)(), void (*free_func)());

int DH_set_ex_data(DH *d, int idx, char *arg);

char *DH_get_ex_data(DH *d, int idx);

DH* d2i_DHparams(DH **a, unsigned char **pp, long length);

int i2d_DHparams(const DH *a, unsigned char **pp);

int DHparams_print_fp(FILE *fp, const DH *x);
int DHparams_print(BIO *bp, const DH *x);

DESCRIPTION

These functions implement the Diffie-Hellman key agreement protocol. The generation oftared

parameters is described H_generate_paramete(8); DH_generate_kef8) describes how to per-
form a key agreement.

TheDH structure consists of seveBIGNUM components.

struct
{
BIGNUM *p; /I prime number (shared)
BIGNUM *g; /I generator of Z_p (shared)
BIGNUM *priv_key; /I private DH value x
BIGNUM *pub_key; // public DH value g™x
...
%

DH

Note thatDH keys may use non-standabti_ METHOD implementations, either directly or by the use

of ENGINE modules. In some cases (eg.ENGINE providing support for hardware-embedded keys),
theseBIGNUM values will not be used by the implementation or may be used for alternative data stor-
age. For this reason, applications should generally avoid @sihgtructure elements directly and

instead us@PI functions to query or modify keys.

SEE ALSO
dhparam(1), bn(3), dsa(3), err(3), rand(3), rsa(3), enging3), DH_set _metho(B), DH_new(3),
DH_get_ex_new_ind€R), DH_generate paramete(3), DH_compute_kef8), d2i_ DHparamg3),
RSA_prin(3)

184 2002-08-05 0.9.7c

DH_generate_key(3) OpenSSL DH_generate_key(3)

NAME
DH_generate_key, DH_compute_key — perform Diffie—Hellman key exchange

SYNOPSIS
#include <openssl/dh.h>

int DH_generate_key(DH *dh);
int DH_compute_key(unsigned char *key, BIGNUM *pub_key, DH *dh);

DESCRIPTION
DH_generate_keyQerforms the first step of a Diffie-Hellman key exchange by generating private and
public DH values. By callingDH_compute_key(Jthese are combined with the other party’s public
value to compute the shared key.

DH_generate_key@xpectsdh to contain the shared parametdns->p anddh->g. It generates a ran-
dom privateDH value unlessdih—>priv_key is already set, and computes the corresponding public
valuedh->pub_key, which can then be published.

DH_compute_key(@omputes the shared secret from the prizatevalue indh and the other party’'s
public value inpub_keyand stores it ikkey. key must point tdDH_size(dh)bytes of memory.

RETURN VALUES
DH_generate_key(eturns 1 on success, 0 otherwise.

DH_compute_key@eturns the size of the shared secret on success, -1 on error.
The error codes can be obtained2RR_get_errof3).

SEE ALSO
dh(3), ERR_get_erro(3), rand(3), DH_sizg(3)

HISTORY
DH_generate_key@ndDH_compute_key@re available in all versions of SSLeay and OpenSSL.

0.9.7c 2002-09-25 185

DH_generate_parameters(3) OpenSSL DH_generate_parameters(3)

NAME
DH_generate_parameters, DH_check — generate and check Diffie—Hellman parameters

SYNOPSIS
#include <openssl/dh.h>

DH *DH_generate_parameters(int prime_len, int generator,
void (*callback)(int, int, void *), void *cb_arg);

int DH_check(DH *dh, int *codes);

DESCRIPTION
DH_generate_parametersflenerates Diffie-Hellman parameters that can be shared among a group of
users, and returns them in a newly allocayedstructure. The pseudo-random number generator must
be seeded prior to callifigH_generate parameters()

prime_lenis the length in bits of the safe prime to be generagetderatoris a small number > 1, typ-
ically 2 or 5.

A callback function may be used to provide feedback about the progress of the key generatibn. If
back is notNULL, it will be called as described BN_generate_prim@) while a random prime num-
ber is generated, and when a prime has been foealidack(3, 0, cb_arg)s called.

DH_check()validates Diffie-Hellman parameters. It checks fhé& a safe prime, and thgtis a suit-
able generator. In the case of an error, the bit flags CHECK_P_NOT_SAFE_PRIMEOr
DH_NOT_SUITABLE_GENERATORare set irtfcodes DH_UNABLE_TO_CHECK_GENERATORS set if
the generator cannot be checked, i.e. it does not equal 2 or 5.

RETURN VALUES
DH_generate_parametersfgturns a pointer to thBH structure, oNULL if the parameter generation
fails. The error codes can be obtained2RR_get_erro(3).

DH_check(xeturns 1 if the check could be performed, O otherwise.

NOTES
DH_generate_parametersf)ay run for several hours before finding a suitable prime.

The parameters generateddy_generate _parametersgye not to be used in signature schemes.

BUGS

If generatoris not 2 or 5dh—>g=generatoris not a usable generator.
SEE ALSO

dh(3), ERR_get_erro(3), rand(3), DH_free(3)
HISTORY

DH_check()is available in all versions of SSLeay and OpenSSL. ¢ctharg argument tdH_gener-
ate_parameters(vas added in SSLeay 0.9.0.

In versions before OpenSSL 0.9.BH_CHECK_P_NOT_STRONG_PRIMEis used instead of
DH_CHECK_P_NOT_SAFE_PRIME

186 2002-09-25 0.9.7c

DH_get_ex_new_index(3) OpenSSL DH_get_ex_new_index(3)

NAME
DH_get _ex_new_index, DH_set_ex_data, DH_get ex data — add application specific data to DH struc-
tures

SYNOPSIS
#include <openssl/dh.h>
int DH_get_ex_new_index(long argl, void *argp,
CRYPTO_EX_ new *new_func,
CRYPTO_EX_ dup *dup_func,
CRYPTO_EX free *free_func);
int DH_set_ex_data(DH *d, int idx, void *arg);
char *DH_get_ex_data(DH *d, int idx);
DESCRIPTION
These functions handle application specific dat®hnstructures. Their usage is identical to that of

RSA_get ex _new_index() RSA_set_ex_data() and RSA get ex data() as described in
RSA_get_ex_new_ind&.

SEE ALSO
RSA_get_ex_new_ind@), dh(3)

HISTORY
DH_get_ex_new_index(PH_set ex data@ndDH_get ex_ data(®re available since OpenSSL 0.9.5.

0.9.7c 2002-07-10 187

DH_new(3) OpenSSL DH_new(3)

NAME
DH_new, DH_free - allocate and free DH objects

SYNOPSIS
#include <openssl/dh.h>

DH* DH_new(void);
void DH_free(DH *dh);

DESCRIPTION
DH_new()allocates and initializes@H structure.

DH_free() frees theDH structure and its components. The values are erased before the memory is
returned to the system.

RETURN VALUES
If the allocation fails,DH_new() returns NULL and sets an error code that can be obtained by
ERR_get_erro(3). Otherwise it returns a pointer to the newly allocated structure.

DH_free()returns no value.

SEE ALSO
dh(3), ERR_get_erro(3), DH_generate_paramete(3), DH_generate_kefB)

HISTORY
DH_new()andDH_free()are available in all versions of SSLeay and OpenSSL.

188 2002-09-25 0.9.7c

DH_set_method(3) OpenSSL DH_set_method(3)

NAME
DH_set_default_method, DH_get default_method, DH_set _method, DH_new_method, DH_OpenSSL
- select DH method

SYNOPSIS
#include <openssl/dh.h>
#include <openssl/engine.h>

void DH_set_default_method(const DH_METHOD *meth);
const DH_METHOD *DH_get_default_method(void);

int DH_set_method(DH *dh, const DH_METHOD *meth);
DH *DH_new_method(ENGINE *engine);

const DH_METHOD *DH_OpenSSL(void);

DESCRIPTION
A DH_METHOD specifies the functions that OpenSSL uses for Diffie-Hellman operations. By modify-
ing the method, alternative implementations such as hardware accelerators may W¢P@RTANT:
See theNOTESsection for important information about how th&s¢ API functions are affected by the
use ofENGINE API calls.

Initially, the default DH_METHOD is the OpenSSL internal implementation, as returned by
DH_OpenSSL()

DH_set_default_method(akesmeth the default method for atbH structures created lateB: This
is true only whilst N(ENGINE has been set as a default fit, so this function is no longer recom-
mended.

DH_get_default_method¢eturns a pointer to the current defab_METHOD. However, the mean-
ingfulness of this result is dependant on whethelEtW@INE APl is being used, so this function is no
longer recommended.

DH_set_method(kelectsmeth to perform all operations using the kedi. This will replace the
DH_METHOD used by thedH key and if the previous method was supplied b¥EBGINE, the handle

to thatENGINE will be released during the change. It is possible to bav&eys that only work with
certain DH_METHOD implementations (eg. from aBNGINE module that supports embedded hard-
ware-protected keys), and in such cases attempting to chanpél tMeETHOD for the key can have
unexpected results.

DH_new_method@llocates and initializes@H structure so thanginewill be used for thé®H opera-
tions. If engineis NULL, the defaultENGINE for DH operations is used, and if no defaENGINE is
set, theDH_METHOD controlled byDH_set_default_methodi§ used.

THE DH_METHOD STRUCTURE
typedef struct dh_meth_st
{
/* name of the implementation */
const char *name;

/* generate private and public DH values for key agreement */
int (*generate_key)(DH *dh);
/* compute shared secret */
int (*compute_key)(unsigned char *key, BIGNUM *pub_key, DH *dh);

/* compute r =a "~ p mod m (May be NULL for some implementations) */
int (*bn_mod_exp)(DH *dh, BIGNUM *r, BIGNUM *a, const BIGNUM *p,
const BIGNUM *m, BN_CTX *ctx,
BN_MONT_CTX *m_ctx);

/* called at DH_new */
int (*init)(DH *dh);

0.9.7c 2002-10-29 189

DH_set_method(3) OpenSSL DH_set_method(3)

/* called at DH_free */
int (*finish)(DH *dh);

int flags;
char *app_data; /* ?? */
} DH_METHOD;

RETURN VALUES
DH_OpenSSL@ndDH_get_default_method(gturn pointers to the respectidel_METHOD s.

DH_set_default_method(@turns no value.

DH_set_method(yeturns non-zero if the providadeth was successfully set as the method dbr
(including unloading thENGINE handle if the previous method was supplied bEEGINE).

DH_new_method()eturnsNULL and sets an error code that can be obtaineiRfy_get_erro(3) if
the allocation fails. Otherwise it returns a pointer to the newly allocated structure.

NOTES
As of version 0.9.7DH_METHOD implementations are grouped together with other algorithmic APIs
(eg.RSA_METHOD, EVP_CIPHER etc) InENGINE modules. If a defaulENGINE is specified foDH
functionality using arENGINE API function, that will override anpH defaults set using theH API
(ie. DH_set _default_method()For this reason, thENGINE APIis the recommended way to control
default implementations for use i and other cryptographic algorithms.

SEE ALSO
dh(3), DH_new(3)

HISTORY

DH_set_default_method() DH_get_default_method() DH_set_method() DH_new_method() and
DH_OpenSSL (vere added in OpenSSL 0.9.4.

DH_set_default_openssl_method() and DH_get_default_openssl_method() replaced
DH_set_default_method(and DH_get_default method(yespectively, andDH_set method()and
DH_new_method(@yere altered to useNGINESs rather tha®H_METHOD s during development of the

engine version of OpenSSL 0.9.6. For 0.9.7, the handling of defaults ENGI&IE APl was restruc-

tured so that this change was reversed, and behaviour of the other functions resembled more closely the
previous behaviour. The behaviour of defaults inEN&INE API now transparently overrides the be-
haviour of defaults in thBH API without requiring changing these function prototypes.

190 2002-10-29 0.9.7c

DH_size(3) OpenSSL DH_size(3)

NAME
DH_size - get Diffie-Hellman prime size

SYNOPSIS
#include <openssl/dh.h>

int DH_size(DH *dh);
DESCRIPTION

This function returns the Diffie-Hellman size in bytes. It can be used to determine how much memory
must be allocated for the shared secret computé&Hyompute_key()

dh—>p must not beNULL .

RETURN VALUE
The size in bytes.

SEE ALSO
dh(3), DH_generate_kef8)

HISTORY
DH_size()is available in all versions of SSLeay and OpenSSL.

0.9.7c 2000-02-24 191

dsa(3) OpenSSL dsa(3)

NAME
dsa - Digital Signature Algorithm

SYNOPSIS
#include <openssl/dsa.h>
#include <openssl/engine.h>

DSA* DSA_new(void);
void DSA_free(DSA *dsa);

int DSA_size(const DSA *dsa);

DSA* DSA _generate_parameters(int bits, unsigned char *seed,
int seed_len, int *counter_ret, unsigned long *h_ret,
void (*callback)(int, int, void *), void *cb_arg);

DH * DSA_dup_DH(const DSA *);
int DSA_generate_key(DSA *dsa);

int DSA_sign(int dummy, const unsigned char *dgst, int len,
unsigned char *sigret, unsigned int *siglen, DSA *dsa);
int DSA_sign_setup(DSA *dsa, BN_CTX *ctx, BIGNUM **kinvp,
BIGNUM **rp);
int DSA_verify(int dummy, const unsigned char *dgst, int len,
const unsigned char *sigbuf, int siglen, DSA *dsa);

void DSA_set_default_method(const DSA_METHOD *meth);
const DSA_METHOD *DSA_get_default_method(void);

int DSA_set_method(DSA *dsa, const DSA_METHOD *meth);
DSA *DSA_new_method(ENGINE *engine);

const DSA_METHOD *DSA_OpenSSL(void);

int DSA_get_ex_new_index(long argl, char *argp, int (*new_func)(),
int (*dup_func)(), void (*free_func)());

int DSA_set_ex_data(DSA *d, int idx, char *arg);

char *DSA_get_ex_data(DSA *d, int idx);

DSA_SIG *DSA_SIG_new(void);

void DSA_SIG free(DSA_SIG *a);

int i2d_DSA_SIG(const DSA_SIG *a, unsigned char **pp);

DSA_SIG *d2i_DSA_SIG(DSA_SIG **v, unsigned char **pp, long length);

DSA_SIG *DSA_do_sign(const unsigned char *dgst, int dlen, DSA *dsa);
int DSA_do_verify(const unsigned char *dgst, int dgst_len,
DSA_SIG *sig, DSA *dsa);

DSA* d2i_DSAPublicKey(DSA **a, unsigned char **pp, long length);
DSA* d2i_DSAPrivateKey(DSA **a, unsigned char **pp, long length);
DSA* d2i_DSAparams(DSA **a, unsigned char **pp, long length);

int i2d_DSAPublicKey(const DSA *a, unsigned char **pp);

int i2d_DSAPrivateKey(const DSA *a, unsigned char **pp);

int i2d_DSAparams(const DSA *a,unsigned char **pp);

int DSAparams_print(BIO *bp, const DSA *x);
int DSAparams_print_fp(FILE *fp, const DSA *x);
int DSA_print(BIO *bp, const DSA *x, int off);
int DSA_print_fp(FILE *bp, const DSA *x, int off);

DESCRIPTION
These functions implement the Digital Signature Algorittb$4). The generation of shareniSA
parameters is described8A _generate parametdB); DSA_generate_kég) describes how to gen-
erate a signature key. Signature generation and verification are desciliifed inigrn(3).

TheDSA structure consists of seveBIGNUM components.

192 2002-08-05 0.9.7c

dsa(3) OpenSSL dsa(3)

struct
{
BIGNUM *p; /I prime number (public)
BIGNUM *q; /I 160-bit subprime, q O p-1 (public)
BIGNUM *g; /I generator of subgroup (public)
BIGNUM *priv_key; /I private key x
BIGNUM *pub_key; /l public key y = g"x
...
}
DSA;

In public keyspriv_key is NULL.

Note thatDSA keys may use non-standab$A_METHOD implementations, either directly or by the

use of ENGINE modules. In some cases (eg. BEMGINE providing support for hardware-embedded
keys), thes®IGNUM values will not be used by the implementation or may be used for alternative data
storage. For this reason, applications should generally avoid DSimgtructure elements directly and
instead us@PI functions to query or modify keys.

CONFORMING TO
US Federal Information Processing Standairis 186 (Digital Signature StandamdSs), ANSI X9.30

SEE ALSO
bn(3), dh(3), err(3), rand(3), rsa(3), sha(3), enging3), DSA new3), DSA_siz€3), DSA gener-
ate_parameter&3), DSA_dup_DH3), DSA generate kd€8), DSA sign3), DSA_set methdd),
DSA_get ex_new_indé&X), RSA_ prin(3)

0.9.7c 2002-08-05 193

DSA_do_sign(3) OpenSSL DSA_do_sign(3)

NAME
DSA_do_sign, DSA_do_verify — raw DSA signature operations

SYNOPSIS
#include <openssl/dsa.h>

DSA_SIG *DSA_do_sign(const unsigned char *dgst, int dlen, DSA *dsa);

int DSA_do_verify(const unsigned char *dgst, int dgst_len,
DSA_SIG *sig, DSA *dsa);

DESCRIPTION
DSA_do_sign(tomputes a digital signature on tle@ byte message digedyst using the private key
dsaand returns it in a newly allocat&$A_SIG structure.

DSA_sign_setuf8) may be used to precompute part of the signing operation in case signature genera-

tion is time—critical.
DSA_do_verify(yerifies that the signatustg matches a given message digdgst of sizelen. dsais
the signer’s public key.

RETURN VALUES
DSA_do_sign(jeturns the signaturslULL on error. DSA_do_verify(Jyeturns 1 for a valid signature, O
for an incorrect signature and —1 on error. The error codes can be obtalBB&bget erro¢3).

SEE ALSO
dsa(3), ERR_get_erro(3), rand(3), DSA_SIG_ne\B), DSA_sign(3)

HISTORY
DSA_do_sign(@ndDSA_do_verify(vere added in OpenSSL 0.9.3.

194 2002-09-25 0.9.7c

DSA_dup_DH(3) OpenSSL DSA_dup_DH(3)

NAME
DSA_dup_DH - create a DH structure out of DSA structure

SYNOPSIS
#include <openssl/dsa.h>

DH * DSA _dup_DH(const DSA *r);

DESCRIPTION
DSA_dup_DH(duplicatesDSA parameters/keys aH parameters/keys. q is lost during that conver-
sion, but the resultinDH parameters contain its length.

RETURN VALUE
DSA_dup_DH(yeturns the nevdH structure, andNULL on error. The error codes can be obtained by
ERR_get_erro(3).

NOTE
Be careful to avoid small subgroup attacks when using this.

SEE ALSO
dh(3), dsa(3), ERR_get_errof3)

HISTORY
DSA_dup_DH(was added in OpenSSL 0.9.4.

0.9.7c 2002-09-25 195

DSA_generate_key(3) OpenSSL DSA_generate_key(3)

NAME
DSA_generate_key — generate DSA key pair

SYNOPSIS
#include <openssl/dsa.h>
int DSA_generate_key(DSA *a);

DESCRIPTION
DSA_generate_keyExpectsa to containDSA parameters. It generates a new key pair and stores it in
a—>pub_keyanda->priv_key.

ThePRNGmust be seeded prior to callibA_generate _key()

RETURN VALUE
DSA_generate_key(jeturns 1 on success, 0 otherwise. The error codes can be obtained by
ERR_get_erro(3).

SEE ALSO
dsa(3), ERR_get_erro(3), rand(3), DSA_generate_parametd

HISTORY
DSA_generate_keyi§ available since SSLeay 0.8.

196 2002-09-25 0.9.7c

DSA_generate_parameters(3) OpenSSL DSA_generate_parameters(3)

NAME
DSA_generate_parameters — generate DSA parameters

SYNOPSIS
#include <openssl/dsa.h>

DSA *DSA_generate_parameters(int bits, unsigned char *seed,
int seed_len, int *counter_ret, unsigned long *h_ret,
void (*callback)(int, int, void *), void *cb_arg);

DESCRIPTION
DSA_generate_parameterg@nerates primes p and q and a generator g for useste

bits is the length of the prime to be generated;iB8allows a maximum of 1024 bits.

If seedis NULL or seed_lerx 20, the primes will be generated at random. Otherwise, the seed is used
to generate them. If the given seed does not yield a prime q, a new random seed is chosen and placed at
seed.

DSA_generate_parametergfaces the iteration count itéunter_retand a counter used for finding a
generator in *h_ret, unless these ateLL .

A callback function may be used to provide feedback about the progress of the key generatibn. If
back is notNULL, it will be called as follows:

* When a candidate for q is generateal)back(0, m++, cb_arg)is called (m is O for the first can-
didate).

* When a candidate for q has passed a test by trial divisaiack(l, —1, cb_arg)is called.
While a candidate for q is tested by Miller-Rabin primality tesaiback(l, i, cb_arg)is called
in the outer loop (once for each witness that confirms that the candidate may be prime); i is the
loop counter (starting at 0).

 When a prime g has been fourdllback(2, 0, cb_argyandcallback(3, 0, cb_arg)are called.

 Before a candidate for p (other than the first) is generated and teatkdck(0, counter,
cb_arg)is called.

* When a candidate for p has passed the test by trial divisadiback(l, -1, cb_arg)is called.
While it is tested by the Miller-Rabin primality tesgllback(1, i, cb_arg)is called in the outer
loop (once for each witness that confirms that the candidate may be prime). i is the loop counter
(starting at 0).

* When p has been founckllback(2, 1, cb_arg)s called.
» When the generator has been fowrallback(3, 1, cb_arg)s called.

RETURN VALUE
DSA_generate_parameters@turns a pointer to thBSA structure, oNULL if the parameter genera-
tion fails. The error codes can be obtainedERR_get_erro(3).

BUGS
Seed lengths > 20 are not supported.

SEE ALSO
dsa(3), ERR_get_erro(3), rand(3), DSA_fred?3)

HISTORY
DSA_generate_parametersgppeared in SSLeay 0.8. Tle_arg argument was added in SSLeay
0.9.0. In versions up to OpenSSL 0.9cdllback(l, ...)was called in the inner loop of the Miller-
Rabin test whenever it reached the squaring step (the parametattbaek did not reveal how many
witnesses had been tested); since OpenSSL @&lback(l, ...) is called as iBN_is_primg3), i.e.
once for each witness. =cut

0.9.7c 2002-09-25 197

DSA_get_ex_new_index(3) OpenSSL DSA_get_ex_new_index(3)

NAME
DSA_get ex_new_index, DSA set ex data, DSA_get ex data — add application specific data to DSA
structures

SYNOPSIS
#include <openssl/DSA.h>
int DSA_get_ex_new_index(long argl, void *argp,
CRYPTO_EX_ new *new_func,
CRYPTO_EX_ dup *dup_func,
CRYPTO_EX free *free_func);

int DSA_set_ex_data(DSA *d, int idx, void *arg);
char *DSA_get_ex_data(DSA *d, int idx);

DESCRIPTION
These functions handle application specific datadn structures. Their usage is identical to that of
RSA_get ex_new_index() RSA_set_ex_data() and RSA get ex data() as described in
RSA_get_ex_new_ind&.

SEE ALSO
RSA_get_ex_new_ind@, dsa(3)

HISTORY
DSA_@t _ex_new_index(DSA set ex data@nd DSA_get ex data@re available since OpenSSL
0.9.5.

198 2000-01-30 0.9.7c

DSA_new(3) OpenSSL DSA_new(3)

NAME
DSA_new, DSA _free - allocate and free DSA objects

SYNOPSIS
#include <openssl/dsa.h>
DSA* DSA_new(void);
void DSA_free(DSA *dsa);
DESCRIPTION

DSA _new() allocates and initializes aDSA structure. It is equivalent to calling
DSA_new_method(ULL).

DSA_free()frees theDSA structure and its components. The values are erased before the memory is
returned to the system.

RETURN VALUES
If the allocation fails,DSA new()returnsNULL and sets an error code that can be obtained by
ERR_get_erro(3). Otherwise it returns a pointer to the newly allocated structure.

DSA_free(yeturns no value.

SEE ALSO
dsa(3), ERR_get_erro(3), DSA_generate_parametd®), DSA_generate_kdég)

HISTORY
DSA_new(andDSA _free(jare available in all versions of SSLeay and OpenSSL.

0.9.7c 2002-09-25 199

DSA_set_method(3) OpenSSL DSA_set_method(3)

NAME
DSA_set default_method, DSA get default_ method, DSA _set method, @ DSA new_method,
DSA_OpenSSL - select DSA method

SYNOPSIS
#include <openssl/dsa.h>
#include <openssl/engine.h>

void DSA_set_default_method(const DSA_METHOD *meth);
const DSA_METHOD *DSA_get_default_method(void);

int DSA_set_method(DSA *dsa, const DSA_METHOD *meth);
DSA *DSA_new_method(ENGINE *engine);

DSA_METHOD *DSA_OpenSSL(void);

DESCRIPTION
A DSA_METHOD specifies the functions that OpenSSL usesD®A operations. By modifying the
method, alternative implementations such as hardware accelerators may beIRGBIANT: See the
NOTESsection for important information about how th&sA API functions are affected by the use of
ENGINE API calls.

Initially, the default DSA_METHOD is the OpenSSL internal implementation, as returned by
DSA_OpenSSL()

DSA_set_default_methodf)akesmeth the default method for albSA structures created latexB:
This is true only whilst n&ENGINE has been set as a default fi8A, so this function is no longer rec-
ommended.

DSA_get default_method@turns a pointer to the current defadfA_ METHOD. However, the mean-
ingfulness of this result is dependant on whethelEtW@INE APl is being used, so this function is no
longer recommended.

DSA_set_method@electsmeth to perform all operations using the kesa. This will replace the
DSA_METHOD used by thedSA key and if the previous method was supplied b¥ERGINE, the han-
dle to thatENGINE will be released during the change. It is possible to b@fakeys that only work
with certainDSA_METHOD implementations (eg. from aBNGINE module that supports embedded
hardware-protected keys), and in such cases attempting to charig@Ath@ETHOD for the key can
have unexpected results.

DSA_new_method@llocates and initializes BSA structure so thagnginewill be used for theDSA
operations. lengineis NULL, the default engine fdbSA operations is used, and if no defaEMGINE
is set, thabSA_METHODcontrolled byDSA_set default_method¢)used.

THE DSA_METHOD STRUCTURE
struct
{
/* name of the implementation */
const char *name;
[* sign */
DSA_SIG *(*dsa_do_sign)(const unsigned char *dgst, int dlen,
DSA *dsa);

[* pre-compute k™1 and r */
int (*dsa_sign_setup)(DSA *dsa, BN_CTX *ctx_in, BIGNUM **kinvp,
BIGNUM **rp);
[* verify */
int (*dsa_do_verify)(const unsigned char *dgst, int dgst_len,
DSA_SIG *sig, DSA *dsa);

200 2002-10-29 0.9.7c

DSA_set_method(3) OpenSSL DSA_set_method(3)

/* compute rr = al’pl * a2"p2 mod m (May be NULL for some
implementations) */
int (*dsa_mod_exp)(DSA *dsa, BIGNUM *rr, BIGNUM *al, BIGNUM *p1,
BIGNUM *a2, BIGNUM *p2, BIGNUM *m,
BN_CTX *ctx, BN_MONT_CTX *in_mont);

/* compute r =a "~ p mod m (May be NULL for some implementations) */
int (*bn_mod_exp)(DSA *dsa, BIGNUM *r, BIGNUM *a,
const BIGNUM *p, const BIGNUM *m,
BN_CTX *ctx, BN_MONT_CTX *m_ctx);

/* called at DSA_new */
int (*init)(DSA *DSA);

/* called at DSA_free */
int (*finish)(DSA *DSA);

int flags;
char *app_data; /* ?? */
} DSA_METHOD;

RETURN VALUES
DSA_OpenSSLNdDSA_get default_method@turn pointers to the respectid8A_METHODS.

DSA_set_default_method€turns no value.

DSA_set_method(eturns non-zero if the providedeth was successfully set as the methoddsa
(including unloading thENGINE handle if the previous method was supplied bEEGINE).

DSA_new_method(eturnsNULL and sets an error code that can be obtaineeRiy_get_erro3) if
the allocation fails. Otherwise it returns a pointer to the newly allocated structure.

NOTES
As of version 0.9.7DSA_METHOD implementations are grouped together with other algorithmic APIs
(eg.RSA_METHOD, EVP_CIPHER etc) inENGINE modules. If a defaulENGINE is specified foDSA
functionality using afENGINE API function, that will override anpSA defaults set using tHeSA API
(ie. DSA_set_default_metholl(J-or this reason, thENGINE APl is the recommended way to control
default implementations for use @$A and other cryptographic algorithms.

SEE ALSO
dsa(3), DSA_new3)

HISTORY
DSA_set_default_method(PSA_get default_method(PSA set method(DSA new_method@nd
DSA_OpenSSLyere added in OpenSSL 0.9.4.

DSA_set default_openssl_method() and DSA_get default_openssl_method() replaced
DSA_set_default_method@nd DSA_get default_method(espectively, andDSA_set_method@nd
DSA_new_method(yere altered to usENGINES rather thaldDSA_METHODSs during development of

the engine version of OpenSSL 0.9.6. For 0.9.7, the handling of defaults ENEGISE API was
restructured so that this change was reversed, and behaviour of the other functions resembled more
closely the previous behaviour. The behaviour of defaults IER&NE API now transparently over-

rides the behaviour of defaults in th8A APIwithout requiring changing these function prototypes.

0.9.7c 2002-10-29 201

DSA_SIG_new(3) OpenSSL DSA_SIG_new(3)

NAME
DSA_SIG_new, DSA_SIG_free — allocate and free DSA signature objects

SYNOPSIS
#include <openssl/dsa.h>

DSA_SIG *DSA_SIG_new(void);
void DSA_SIG free(DSA_SIG *a);

DESCRIPTION
DSA_SIG_new(@llocates and initializes@SA_SIG structure.

DSA_SIG_free(frees theDSA_SIG structure and its components. The values are erased before the
memory is returned to the system.

RETURN VALUES
If the allocation fails DSA_SIG_new(jeturnsNULL and sets an error code that can be obtained by
ERR_get_erro(3). Otherwise it returns a pointer to the newly allocated structure.

DSA_SIG_free(jeturns no value.

SEE ALSO
dsa(3), ERR_get_erro3), DSA_do_sigii3)

HISTORY
DSA_SIG_new@ndDSA_SIG_free(jvere added in OpenSSL 0.9.3.

202 2002-09-25 0.9.7c

DSA_sign(3) OpenSSL DSA_sign(3)

NAME

DSA_sign, DSA_sign_setup, DSA_verify — DSA signatures

SYNOPSIS

#include <openssl/dsa.h>

int DSA_sign(int type, const unsigned char *dgst, int len,
unsigned char *sigret, unsigned int *siglen, DSA *dsa);
int DSA_sign_setup(DSA *dsa, BN_CTX *ctx, BIGNUM **kinvp,
BIGNUM **rp);

int DSA_verify(int type, const unsigned char *dgst, int len,
unsigned char *sigbuf, int siglen, DSA *dsa);

DESCRIPTION

DSA_sign(computes a digital signature on tlee@ byte message digedgst using the private keglsa
and places it&SN.1 DER encoding asigret. The length of the signature is places sigten sigret
must point to DSA_sizééa) bytes of memory.

DSA_sign_setupfhay be used to precompute part of the signing operation in case signature generation
is time—critical. It expectsisato containDSA parameters. It places the precomputed values in newly
allocatedBIGNUM s at *kinvp and *p, after freeing the old ones unledsnivp and *rp are NULL.

These values may be passed®A_sign(Jin dsa—>kinv anddsa—>r. ctx is a pre-allocate@N_CTX

or NULL.

DSA_verify()verifies that the signatuggbuf of size siglen matches a given message digagst of
sizelen. dsais the signer’s public key.

Thetype parameter is ignored.
ThePRNGmust be seeded befddSA_sign(Yor DSA_sign_setup))s called.

RETURN VALUES

DSA_sign(Jand DSA_sign_setupeturn 1 on success, 0 on err@SA_verify(returns 1 for a valid
signature, 0 for an incorrect signature and -1 on error. The error codes can be obtained by

ERR_get_erro(3).

CONFORMING TO

US Federal Information Processing Standairis 186 (Digital Signature StandamdSs), ANSI X9.30

SEE ALSO

dsa(3), ERR_get_erro(3), rand(3), DSA_do_sigii3)

HISTORY

0.9.7c

DSA_sign(andDSA _verify(Jare available in all versions of SSLedySA_sign_setupfyas added in
SSLeay 0.8.

2002-09-25 203

DSA_size(3) OpenSSL DSA_size(3)

NAME
DSA_size — get DSA signature size

SYNOPSIS
#include <openssl/dsa.h>

int DSA_size(const DSA *dsa);

DESCRIPTION
This function returns the size of asN.1 encodedSA signature in bytes. It can be used to determine
how much memory must be allocated fa$A signature.

dsa—>qmust not beNULL .

RETURN VALUE
The size in bytes.

SEE ALSO
dsa(3), DSA_sign(3)

HISTORY
DSA_size()s available in all versions of SSLeay and OpenSSL.

204 2002-08-05 0.9.7c

engine(3) OpenSSL

NAME

engine — ENGINE cryptographic module support

SYNOPSIS

0.9.7c

#include <openssl/engine.h>

ENGINE *ENGINE_get_first(void);
ENGINE *ENGINE_get_last(void);
ENGINE *ENGINE_get _next(ENGINE *e);
ENGINE *ENGINE_get_prev(ENGINE *e);

int ENGINE_add(ENGINE *e);
int ENGINE_remove(ENGINE *e);

ENGINE *ENGINE_by_id(const char *id);

int ENGINE_init(ENGINE *e);
int ENGINE_finish(ENGINE *e);

void ENGINE_load_openssl(void);

void ENGINE_load_dynamic(void);

void ENGINE_load_cswift(void);

void ENGINE_load_chil(void);

void ENGINE_load_atalla(void);

void ENGINE_load_nuron(void);

void ENGINE_load_ubsec(void);

void ENGINE_load_aep(void);

void ENGINE_load_sureware(void);

void ENGINE_load_4758cca(void);

void ENGINE_load_openbsd_dev_crypto(void);
void ENGINE_load_builtin_engines(void);

void ENGINE_cleanup(void);

ENGINE *ENGINE_get default RSA(void);
ENGINE *ENGINE_get_default DSA(void);
ENGINE *ENGINE_get default_ DH(void);
ENGINE *ENGINE_get_default RAND(void);
ENGINE *ENGINE_get cipher_engine(int nid);
ENGINE *ENGINE_get_digest_engine(int nid);

int ENGINE_set_default RSA(ENGINE *e);
int ENGINE_set_default DSA(ENGINE *e);
int ENGINE_set_default DH(ENGINE *e);

int ENGINE_set_default RAND(ENGINE *e);
int ENGINE_set_default_ciphers(ENGINE *e);
int ENGINE_set_default_digests(ENGINE *e);

int ENGINE_set_default_string(ENGINE *e, const char *list);
int ENGINE_set_default(ENGINE *e, unsigned int flags);

unsigned int ENGINE_get_table_flags(void);

void ENGINE_set table flags(unsigned int flags);

2002-12-15

engine(3)

205

engine(3) OpenSSL engine(3)

int ENGINE_register RSA(ENGINE *e);

void ENGINE_unregister RSA(ENGINE *e);
void ENGINE_register_all_ RSA(void);

int ENGINE_register DSA(ENGINE *e);

void ENGINE_unregister DSA(ENGINE *e);
void ENGINE_register_all_DSA(void);

int ENGINE_register DH(ENGINE *e);

void ENGINE_unregister DH(ENGINE *e);
void ENGINE_register_all_DH(void);

int ENGINE_register RAND(ENGINE *e);

void ENGINE_unregister RAND(ENGINE *e);
void ENGINE_register_all RAND(void);

int ENGINE_register_ciphers(ENGINE *e);
void ENGINE_unregister_ciphers(ENGINE *e);
void ENGINE_register_all_ciphers(void);

int ENGINE_register_digests(ENGINE *e);
void ENGINE_unregister_digests(ENGINE *e);
void ENGINE_register_all_digests(void);

int ENGINE_register_complete(ENGINE *e);
int ENGINE_register_all_complete(void);

int ENGINE_ctrl(ENGINE *e, int cmd, long i, void *p, void (*)());
int ENGINE_cmd_is_executable(ENGINE *e, int cmd);
int ENGINE_ctrl_cmd(ENGINE *e, const char *cmd_name,
long i, void *p, void (*f)(), int cmd_optional);
int ENGINE_ctrl_cmd_string(ENGINE *e, const char *cmd_name, const char *arg,
int cmd_optional);

int ENGINE_set_ex_data(ENGINE *e, int idx, void *arg);
void *ENGINE_get_ex_data(const ENGINE *e, int idx);

int ENGINE_get_ex_new_index(long argl, void *argp, CRYPTO_EX_new *new_func,
CRYPTO_EX_ dup *dup_func, CRYPTO_EX free *free_func);

ENGINE *ENGINE_new(void);
int ENGINE_free(ENGINE *e);

int ENGINE_set id(ENGINE *e, const char *id);

int ENGINE_set_name(ENGINE *e, const char *name);

int ENGINE_set RSA(ENGINE *e, const RSA_METHOD *rsa_meth);

int ENGINE_set DSA(ENGINE *e, const DSA_METHOD *dsa_meth);

int ENGINE_set DH(ENGINE *e, const DH_METHOD *dh_meth);

int ENGINE_set RAND(ENGINE *e, const RAND_METHOD *rand_meth);

int ENGINE_set_destroy_function(ENGINE *e, ENGINE_GEN_INT_FUNC_PTR destroy_f);
int ENGINE_set_init_function(ENGINE *e, ENGINE_GEN_INT_FUNC_PTR init_f);

int ENGINE_set_finish_function(ENGINE *e, ENGINE_GEN_INT_FUNC_PTR finish_f);

int ENGINE_set_ctrl_function(ENGINE *e, ENGINE_CTRL_FUNC_PTR ctrl_f);

int ENGINE_set _load_privkey_function(ENGINE *e, ENGINE_LOAD_KEY_PTR loadpriv_f);
int ENGINE_set _load_pubkey function(ENGINE *e, ENGINE_LOAD_KEY_PTR loadpub_f);
int ENGINE_set_ciphers(ENGINE *e, ENGINE_CIPHERS_PTR f);

int ENGINE_set_digests(ENGINE *e, ENGINE_DIGESTS_PTR f);

int ENGINE_set flags(ENGINE *e, int flags);

int ENGINE_set_cmd_defns(ENGINE *e, const ENGINE_CMD_DEFN *defns);

206 2002-12-15 0.9.7c

engine(3) OpenSSL engine(3)

const char *ENGINE_get_id(const ENGINE *e);

const char *ENGINE_get_name(const ENGINE *e);

const RSA_METHOD *ENGINE_get RSA(const ENGINE *e);

const DSA_METHOD *ENGINE_get DSA(const ENGINE *e);

const DH_METHOD *ENGINE_get DH(const ENGINE *e);

const RAND_METHOD *ENGINE_get RAND(const ENGINE *e);
ENGINE_GEN_INT_FUNC_PTR ENGINE_get_destroy_function(const ENGINE *e);
ENGINE_GEN_INT_FUNC_PTR ENGINE_get _init_function(const ENGINE *e);
ENGINE_GEN_INT_FUNC_PTR ENGINE_get finish_function(const ENGINE *e);
ENGINE_CTRL_FUNC_PTR ENGINE_get ctrl_function(const ENGINE *e);
ENGINE_LOAD_KEY_PTR ENGINE_get load_privkey_function(const ENGINE *e);
ENGINE_LOAD_KEY_PTR ENGINE_get load pubkey_ function(const ENGINE *e);
ENGINE_CIPHERS_PTR ENGINE_get ciphers(const ENGINE *e);
ENGINE_DIGESTS PTR ENGINE_get_digests(const ENGINE *e);

const EVP_CIPHER *ENGINE_get cipher(ENGINE *e, int nid);

const EVP_MD *ENGINE_get_digest(ENGINE *e, int nid);

int ENGINE_get_flags(const ENGINE *e);

const ENGINE_CMD_DEFN *ENGINE_get_cmd_defns(const ENGINE *e);

EVP_PKEY *ENGINE_load_private_key(ENGINE *e, const char *key _id,
Ul_METHOD *ui_method, void *callback data);

EVP_PKEY *ENGINE_load_public_key(ENGINE *e, const char *key _id,
Ul_METHOD *ui_method, void *callback data);

void ENGINE_add_conf_module(void);

DESCRIPTION

0.9.7c

These functions create, manipulate, and use cryptographic modules in the feNGINE objects.
These objects act as containers for implementations of cryptographic algorithms, and support a refer-
ence-counted mechanism to allow them to be dynamically loaded in and out of the running application.

The cryptographic functionality that can be provided byERGINE implementation includes the fol-
lowing abstractions;

RSA_METHOD - for providing alternative RSA implementations

DSA_METHOD, DH_METHOD, RAND_METHOD - alternative DSA, DH, and RAND
EVP_CIPHER - potentially multiple cipher algorithms (indexed by 'nid’)
EVP_DIGEST - potentially multiple hash algorithms (indexed by 'nid’)

key-loading - loading public and/or private EVP_PKEY keys

Reference counting and handles

Due to the modular nature of tB&IGINE APJ, pointers to ENGINES need to be treated as handles - ie.
not only as pointers, but also as references to the undeB)}NGHNE object. le. you should obtain a
new reference when making copies ofENGINE pointer if the copies will be used (and released) inde-
pendantly.

ENGINE objects have two levels of reference-counting to match the way in which the objects are used.
At the most basic level, ea@NGINE pointer is inherently atructural reference — you need a struc-

tural reference simply to refer to the pointer value at all, as this kind of reference is your guarantee that
the structure can not be deallocated until you release your reference.

However, a structural reference provides no guarantee thaNtBIRIE has been initiliased to be usable

to perform any of its cryptographic implementations — and indeed it's quite possible that most
ENGINESs will not initialised at all on standard setups, as ENGINESs are typically used to support spe-
cialised hardware. To use &nNGINE's functionality, you need functional reference. This kind of ref-

erence can be considered a specialised form of structural reference, because each functional reference
implicitly contains a structural reference as well — however to avoid difficult-to-find programming
bugs, it is recommended to treat the two kinds of reference independantly. If you have a functional ref-
erence to aENGINE, you have a guarantee that #GINE has been initialised ready to perform cryp-
tographic operations and will not be uninitialised or cleaned up until after you have released your refer-
ence.

We will discuss the two kinds of reference separately, including how to tell which one you are dealing

2002-12-15 207

engine(3) OpenSSL engine(3)

208

with at ary given point in time (after all they are both simpBNGINE *) pointers, the diierence is in
the way they are used).

Structural references

This basic type of reference is typically used for creating new ENGINEs dynamically, iterating across
OpenSSLs internal linked-list of loaded ENGINES, reading information aboBN&INE, etc. Essen-

tially a structural reference is sufficient if you only need to query or manipulate the datBNGNE
implementation rather than use its functionality.

The ENGINE_new()function returns a structural reference to a new (empNGINE object. Other

than that, structural references come from retwiues to variouENGINE API functions such as;
ENGINE_by id() ENGINE_get first() ENGINE_get_last() ENGINE_get_next()
ENGINE_get prev(). All structural references should be released by a corresponding to call to the
ENGINE_free()function — theENGINE object itself will only actually be cleaned up and deallocated
when the last structural reference is released.

It should also be noted that maBNGINE API function calls that accept a structural reference will
internally obtain another reference - typically this happens whenever the supptNE will be

needed by OpenSSL after the function has returned. Eg. the function to add ENG&NE to
OpenSSL’s internal list iIENGINE_add()- if this function returns success, then OpenSSL will have
stored a new structural reference internally so the caller is still responsible for freeing their own refer-
ence WithENGINE_free()when they are finished with it. In a similar way, some functions will auto-
matically release the structural reference passed to it if part of the function’s job is to do so. Eg. the
ENGINE_get next(and ENGINE_get prev()functions are used for iterating across the internal
ENGINE list — they will return a new structural reference to the next (or prevENG)NE in the list or

NULL if at the end (or beginning) of the list, but in either case the structural reference passed to the
function is released on behalf of the caller.

To clarify a particular function’s handling of references, one should always consult that function’s doc-
umentation “man” page, or failing that the openssl/engine.h header file includes some hints.

Functional references

As mentioned, functional references exist when the cryptographic functionality BN@mE is
required to be available. A functional reference can be obtained in one of two ways; from an existing
structural reference to the requiredGINE, or by asking OpenSSL for the default operatidaeGINE

for a given cryptographic purpose.

To obtain a functional reference from an existing structural reference, cBINBENE _init()function.

This returns zero if thENGINE was not already operational and couldn’t be successfully initialised (eg.
lack of system drivers, no special hardware attached, etc), otherwise it will return non-zero to indicate
that theENGINE is now operational and will have allocated a rienctional reference to theENGINE.

In this case, the supplieeNGINE pointer is, from the point of the view of the caller, both a structural
reference and a functional reference - so if the caller intends to use it as a functional reference it should
free the structural reference WiEBNGINE_free(Xirst. If the caller wishes to use it only as a structural
reference (eg. if thENGINE_init()call was simply to test if thENGINE seems available/online), then

it should free the functional reference; all functional references are released ENGHNE _finish()
function.

The second way to get a functional reference is by asking OpenSSL for a default implementation for a
given task, eg. bENGINE_get_default RSAGENGINE_get_default_cipher_engineétc. These are
discussed in the next section, though they are not usually required by application programmers as they
are used automatically when creating and using the relevant algorithm-specific types in OpenSSL, such
asRSA, DSA, EVP_CIPHER_CTXetc.

Default implementations

For each supported abstraction, BMGINE code maintains an internal table of state to control which
implementations are available for a given abstraction and which should be used by default. These
implementations are registered in the tables separated-out by an 'nid’ index, because abstractions like
EVP_CIPHERandEVP_DIGESTsupport many distinct algorithms and modes — ENGINEs will support
different numbers and combinations of these. In the case of other abstracti®@BAlKSA, etc, there

is only one “algorithm” so all implementations implicitly register using the same 'nid’ index.
ENGINESs can beegisteredinto these tables to make themselves available for use automatically by the

2002-12-15 0.9.7c

engine(3) OpenSSL engine(3)

0.9.7¢c

various abstractions, e®SA. For illustrative purposes, we continue with RR8A example, though all
comments apply similarly to the other abstractions (they each get their own table and linkage to the cor-
responding section of openssl| code).

When a newRSA key is being created, ie. RSA _new_method@ “get_default” call will be made to
the ENGINE subsystem to process tRSA state table and return a functional reference to an initialised
ENGINE whoseRSA_METHOD should be used. If nBNGINE should (or can) be used, it will return
NULL and theRSA key will operate with aNULL ENGINE handle by using the conventiorR$A imple-
mentation in OpenSSL (and will from then on behave the way it used to bef@®aGieE APIexisted

— for details se®SA _new_methdd)).

Each state table has a flag to note whether it has processed this “get_default” query since the table was
last modified, because to process this question it must iterate across all the registered ENGINES in the
table trying to initialise each of them in turn, in case one of them is operational. If it returns a func-
tional reference to aBENGINE, it will also cache another reference to speed up processing future
queries (without needing to iterate across the table). Likewise, it will cathéla response if no
ENGINE was available so that future queries won't repeat the same iteration unless the state table
changes. This behaviour can also be changed; EX@NE_TABLE_FLAG_NOINIT flag is set (using
ENGINE_set_table_flags()), no attempted initialisations will take place, instead the only way for the
state table to return a non-NULENGINE to the “get_default” query will be if one is expressly set in

the table. EQ.EENGINE_set _default RSAdpes the same job &NGINE_register RSA@xcept that it

also sets the state table’s cached response for the “get_default” query.

In the case of abstractions lik&/P_CIPHER where implementations are indexed by 'nid’, these flags
and cached-responses are distinct for each 'mildies

It is worth illustrating the difference between “registration” of ENGINES into these per-algorithm state
tables and using the alternative “set_default” functions. The latter handles both “registration” and also
setting the cached “defaultENGINE in each relevant state table — so registered ENGINEs will only
have a chance to be initialised for use as a default if a dEfaGHNE wasn'’t already set for the same
state table. Eg. iIENGINE X supports cipher nids {A,B} an®SA, ENGINE Y supports ciphers {A}
andDSA, and the following code is executed;

ENGINE_register_complete(X);
ENGINE_set_default(Y, ENGINE_METHOD_ALL);
el = ENGINE_get_default RSA();

e2 = ENGINE_get_cipher_engine(A);

e3 = ENGINE_get_cipher_engine(B);

e4 = ENGINE_get_default DSA();

e5 = ENGINE_get_ cipher_engine(C);

The results would be as follows;

assert(el == X);
assert(e2 ==Y);
assert(e3 == X);
assert(e4 ==Y);
assert(e5 == NULL);

Application requirements

This section will explain the basic things an application programmer should support to make the most
useful elements of thENGINE functionality available to the user. The first thing to consider is whether
the programmer wishes to make alternaBdGINE modules available to the application and user.
OpenSSL maintains an internal linked list of “visible” ENGINEs from which it has to operate — at
start-up, this list is empty and in fact if an application does not calES®NE API calls and it uses

static linking against openssl, then the resulting application binary will not contain any alternative
ENGINE code at all. So the first consideration is whether any/all avai¥&NE implementations
should be made visible to OpenSSL - this is controlled by calling the various “load” functions, eg.

2002-12-15 209

engine(3) OpenSSL engine(3)

210

/* Make the "dynamic" ENGINE available */

void ENGINE_load_dynamic(void);

/* Make the CryptoSwift hardware acceleration support available */
void ENGINE_load_cswift(void);

/* Make support for nCipher’s "CHIL" hardware available */

void ENGINE_load_chil(void);

/* Make ALL ENGINE implementations bundled with OpenSSL available */
void ENGINE_load_builtin_engines(void);

Having called any of these functiom®\GINE objects would have been dynamically allocated and pop-
ulated with these implementations and linked into OpenSSL’s internal linked list. At this point it is
important to mention an importafAPI function;

void ENGINE_ cleanup(void);

If no ENGINE APIfunctions are called at all in an application, then there are no inherent memory leaks
to worry about from th€NGINE functionality, however if any ENGINESs are “load”ed, even if they are
never registered or used, it is necessary to us&MN@INE_cleanup(function to correspondingly
cleanup before program exit, if the caller wishes to avoid memory leaks. This mechanism uses an inter-
nal callback registration table so that &NGINE APIfunctionality that knows it requires cleanup can
register its cleanup details to be called durigfNGINE_cleanup(). This approach allows
ENGINE_cleanup(o clean up after an¥NGINE functionality at all that your program uses, yet
doesn’t automatically create linker dependencies to all posEiR@&NE functionality — only the
cleanup callbacks required by the functionality you do use will be required by tae link

The fact that ENGINESs are made visible to OpenSSL (and thus are linked into the program and loaded
into memory at run—time) does not mean they are “registered” or called into use by OpenSSL automat-
ically — that behaviour is something for the application to have control over. Some applications will
want to allow the user to specify exactly whERGINE they want used if any is to be used at all. Oth-

ers may prefer to load all support and have OpenSSL automatically use at run-tienNGaxg that is

able to successfully initialise — ie. to assume that this corresponds to acceleration hardware attached to
the machine or some such thing. There are probably numerous other ways in which applications may
prefer to handle things, so we will simply illustrate the consequences as they apply to a couple of sim-
ple cases and leave developers to consider these and the source code to openssl’s builtin utilities as
guides.

Using a specifiENGINEimplementation

Here we'll assume an application has been configured by its user or admin to want to usamiae “
ENGINE if it is available in the version of OpenSSL the application was compiled with. If it is avail-
able, it should be used by default for &5A, DSA, and symmetric cipher operation, otherwise
OpenSSL should use its builtin software as per usual. The following code illustrates how to approach
this;

2002-12-15 0.9.7c

engine(3) OpenSSL engine(3)

0.9.7c

ENGINE *g;
const char *engine_id = "ACME";
ENGINE_load_builtin_engines();
e = ENGINE_by id(engine_id);
if(le)
/* the engine isn’t available */
return;
if(lENGINE_init(e)) {
/* the engine couldn't initialise, release 'e’ */
ENGINE_free(e);
return;
}
if(ENGINE_set_default RSA(e))
/* This should only happen when e’ can't initialise, but the previous
* statement suggests it did. */
abort();
ENGINE_set_default DSA(e);
ENGINE_set_default_ciphers(e);
/* Release the functional reference from ENGINE_init() */
ENGINE_finish(e);
/* Release the structural reference from ENGINE_by id() */
ENGINE_free(e);

Automatically using builtifENGINEimplementations

Here we’'ll assume we want to load and registeERIEINE implementations bundled with OpenSSL,
such that for any cryptographic algorithm required by OpenSSL - if there ESI@MNE that imple-
ments it and can be initialise, it should be used. The following code illustrates how this can work;

/* Load all bundled ENGINES into memory and make them visible */
ENGINE_load_builtin_engines();

/* Register all of them for every algorithm they collectively implement */
ENGINE_register_all_complete();

That's all that's required. Eg. the next time OpenSSL tries to set RgAaRkey, any bundled ENGINES
that implementRSA_METHOD will be passed t&ENGINE_init() and if any of those succeed, that
ENGINE will be set as the default for use wikisA from then on.

Advanced configuration support

There is a mechanism supported by EN&SINE framework that allows eadBNGINE implementation

to define an arbitrary set of configuration “commands” and expose them to OpenSSL and any applica-
tions based on OpenSSL. This mechanism is entirely based on the use of name-value pairs and and
assumeasScli input (no unicode oUTF for now!), so it is ideal if applications want to provide a trans-
parent way for users to provide arbitrary configuration “directives” directly to such ENGINEs. It is
also possible for the application to dynamically interrogate the IoaetNE implementations for the

names, descriptions, and input flags of their available “control commands”, providing a more flexible
configuration scheme. However, if the user is expected to know ENGHNE device he/she is using

(in the case of specialised hardware, this goes without saying) then applications may not need to con-
cern themselves with discovering the supported control commands and simply prefer to allow settings
to passed into ENGINEs exactly as they are provided by the user.

Before illustrating how control commands work, it is worth mentioning what they are typically used
for. Broadly speaking there are two uses for control commands; the first is to provide the necessary
details to the implementation (which may know nothing at all specific to the host system) so that it can
be initialised for use. This could include the path to any driver or config files it needs to load, required
network addresses, smart-card identifiers, passwords to initialise password-protected devices, logging
information, etc etc. This class of commands typically needs to be passedENGHME before
attempting to initialise it, ie. before callifigNGINE_init(). The other class of commands consist of set-
tings or operations that tweak certain behaviour or cause certain operations to take place, and these
commands may work either before or aENGINE _init(), or in same cases boENGINE implemen-

tations should provide indications of this in the descriptions attached to builtin control commands

2002-12-15 211

engine(3) OpenSSL engine(3)

212

and/or in &ternal product documentation.
Issuing contol commands to aBNGINE

Let's illustrate by example; a function for which the caller supplies the name BNIRIE it wishes

to use, a table of string-pairs for use before initialisation, and another table for use after initialisation.
Note that the string-pairs used for control commands consist of a command “name” followed by the
command “parameter” — the parameter couldMi L in some cases but the name can not. This func-
tion should initialise th&€NGINE (issuing the “pre” commands beforehand and the “post” commands
afterwards) and set it as the default for everything exeapiD and then return a boolean success or
failure.

int generic_load_engine_fn(const char *engine_id,
const char **pre_cmds, int pre_num,
const char **post_cmds, int post_num)

ENGINE *e = ENGINE_by_id(engine_id);
if('e) return O;
while(pre_num--) {
iflLENGINE_ctrl_cmd_string(e, pre_cmds[0], pre_cmds[1], 0)) {
fprintf(stderr, "Failed command (%s - %s:%s)\n", engine_id,
pre_cmds[0], pre_cmds[1] ? pre_cmds[1] : "(NULL)");
ENGINE_free(e);
return O;
}
pre_cmds += 2;
}
iflENGINE_init(e)) {
fprintf(stderr, "Failed initialisation\n");
ENGINE_free(e);
return O;
}
/* ENGINE_init() returned a functional reference, so free the structural
* reference from ENGINE_by id(). */
ENGINE_free(e);
while(post_num--) {
iflLENGINE_ctrl_cmd_string(e, post_cmds[0], post_cmds[1], 0)) {
fprintf(stderr, "Failed command (%s - %s:%s)\n", engine_id,
post_cmds[0], post_cmds[1] ? post_cmds[1] : "(NULL)");
ENGINE_finish(e);
return O;
}
post_cmds += 2;
}
ENGINE_set_default(e, ENGINE_METHOD_ALL & "ENGINE_METHOD_RAND);
/* Success */
return 1,

}

Note thatENGINE_ctrl_cmd_string(accepts a boolean argument that can relax the semantics of the
function - if set non-zero it will only return failure if tENGINE supported the given command name

but failed while executing it, if thENGINE doesn't support the command name it will simply return
success without doing anything. In this case we assume the user is only supplying commands specific
to the giverENGINE so we set this tBALSE.

Discovering supported control commands

It is possible to discover at run-time the names, numerical-ids, descriptions and input parameters of the
control commands supported from a structural reference tEN@INE. It is first important to note that

some control commands are defined by OpenSSL itself and it will intercept and handle these control
commands on behalf of tHENGINE, ie. theENGINE's ctrl() handler is not used for the control com-
mand. openssl/engine.h defines a symbBNGINE_CMD_BASE that all control commands

2002-12-15 0.9.7c

engine(3) OpenSSL engine(3)

0.9.7c

implemented by ENGINEs from. Ancommand value lower than this symbol is considered a
“generic” command is handled directly by the OpenSSL core routines.

It is using these “core” control commands that one can discover the the control commands imple-
mented by a giveBNGINE, specifically the commands;

#define ENGINE_HAS_CTRL_FUNCTION 10
#define ENGINE_CTRL_GET_FIRST_CMD_TYPE 11
#define ENGINE_CTRL_GET_NEXT_CMD_TYPE 12
#define ENGINE_CTRL_GET_CMD_FROM_NAME 13
#define ENGINE_CTRL_GET_NAME_LEN_FROM_CMD 14
#define ENGINE_CTRL_GET_NAME_FROM_CMD 15
#define ENGINE_CTRL_GET_DESC_LEN_FROM_CMD 16
#define ENGINE_CTRL_GET_DESC_FROM_CMD 17
#define ENGINE_CTRL_GET_CMD_FLAGS 18

Whilst these commands are automatically processed by the OpenSSL framework code, they use various
properties exposed by eaENGINE by which to process these queries. BMGINE has 3 properties it
exposes that can affect this behaviour; it can supplyct&) handler, it can specify
ENGINE_FLAGS_MANUAL_CMD_CTRLIn the ENGINE's flags, and it can expose an array of control
command descriptions. If @8NGINE specifies the&ENGINE_FLAGS_MANUAL_CMD_CTRLflag, then

it will simply pass all these “core” control commands directly to ENGINE's ctrl() handler (and thus,

it must have supplied one), so it is up to BNGINE to reply to these “discovery” commands itself. If

that flag is not set, then the OpenSSL framework code will work with the following rules;

if no ctrl() handler supplied;
ENGINE_HAS CTRL_FUNCTION returns FALSE (zero),
all other commands fail.

if a ctrl() handler was supplied but no array of control commands;
ENGINE_HAS_CTRL_FUNCTION returns TRUE,
all other commands fail.

if a ctrl() handler and array of control commands was supplied;
ENGINE_HAS_CTRL_FUNCTION returns TRUE,
all other commands proceed processing ...

If the ENGINE's array of control commands is empty then all other commands will fail, otherwise;
ENGINE_CTRL_GET_FIRST_CMD_TYPEeturns the identifier of the first command supported by the
ENGINE, ENGINE_GET_NEXT_CMD_TYPEtakes the identifier of a command supported by the
ENGINE and returns the next command identifier or fails if there are no more,
ENGINE_CMD_FROM_NAMEtakes a string name for a command and returns the corresponding identi-
fier or fails if no such command name exists, and the remaining commands take a command identifier
and return properties of the corresponding commands. All eBINE_CTRL_GET_FLAGSeturn

the string length of a command name or description, or populate a supplied character buffer with a copy
of the command name or descripti@NGINE_CTRL_GET_FLAGSeturns a bitwise—-OR’'d mask of the
following possible values;

#define ENGINE_CMD_FLAG_NUMERIC (unsigned int)0x0001
#define ENGINE_CMD_FLAG_STRING (unsigned int)0x0002
#define ENGINE_CMD_FLAG_NO_INPUT (unsigned int)0x0004
#define ENGINE_CMD_FLAG_INTERNAL (unsigned int)0x0008

If the ENGINE_CMD_FLAG_INTERNALflag is set, then any other flags are purely informational to the
caller - this flag will prevent the command being usable for any higheres\M&NE functions such as
ENGINE_ctrl_cmd_string(). INTERNAL” commands are not intended to be exposed to text-based
configuration by applications, administrations, users, etc. These can support arbitrary operations via
ENGINE_ctrl(), including passing to and/or from the control commands data of any arbitrary type.
These commands are supported in the discovery mechanisms simply to allow applications determinie if
an ENGINE supports certain specific commands it might want to use (eg. application “foo” might
query various ENGINESs to see if they impleme®OO_GET_VENDOR_LOGO_GIF- and ENGINE

could therefore decide whether or not to support this “foo”"—specific extension).

2002-12-15 213

engine(3) OpenSSL engine(3)

Futur e developments

The ENGINE APl and internal architecture is currently beingieered. Slated for possible release in
0.9.8 is support for transparent loading of “dynamic” ENGINEs (built as self-contained
shared-libraries). This would alloNGINE implementations to be provided independantly of
OpenSSL libraries and/or OpenSSL-based applications, and would also remove any requirement for
applications to explicitly use the “dynami®NGINE to bind to shared-library implementations.

SEE ALSO

214

rsa(3), dsa(3), dh(3), rand(3), RSA_new_methd8)

2002-12-15 0.9.7c

err(3)

NAME

OpenSSL err(3)

err — error codes

SYNOPSIS

#include <openssl/err.h>

unsigned long ERR_get_error(void);

unsigned long ERR_peek_error(void);

unsigned long ERR_get_error_line(const char **file, int *line);

unsigned long ERR_peek_error_line(const char **file, int *line);

unsigned long ERR_get_error_line_data(const char **file, int *line,
const char **data, int *flags);

unsigned long ERR_peek_error_line_data(const char **file, int *line,
const char **data, int *flags);

int ERR_GET_LIB(unsigned long e);
int ERR_GET_FUNC(unsigned long e);
int ERR_GET_REASON(unsigned long e);

void ERR_clear_error(void);

char *ERR_error_string(unsigned long e, char *buf);
const char *ERR_lib_error_string(unsigned long e);
const char *ERR_func_error_string(unsigned long e);
const char *ERR_reason_error_string(unsigned long e);

void ERR_print_errors(BIO *bp);
void ERR_print_errors_fp(FILE *fp);

void ERR_load_crypto_strings(void);

void ERR_free_strings(void);

void ERR_remove_state(unsigned long pid);

void ERR_put_error(int lib, int func, int reason, const char *file,
int line);

void ERR_add_error_data(int num, ...);

void ERR_load_strings(int lib,ERR_STRING_DATA str[]);

unsigned long ERR_PACK(int lib, int func, int reason);
int ERR_get _next_error_library(void);

DESCRIPTION

When a call to the OpenSSL library fails, this is usually signalled by the return value, and an error code
is stored in an error queue associated with the current threaceriTlibrary provides functions to
obtain these error codes and textual error messages.

TheERR_get_errof3) manpage describes how to access error codes.

Error codes contain information about where the error occurred, and what went wrong.
ERR_GET_LIE3) describes how to extract this information. A method to obtain human-readable error
messages is describeddRR_error_string3).

ERR_clear_erro(3) can be used to clear the error queue.
Note thatERR_remove_sta(8) should be used to avoid memory leaks when threads are terminated.

ADDING NEW ERROR CODES TO OPENSSL

0.9.7c

SeeERR_put_erro(3) if you want to record error codes in the OpenSSL error system from within your
application.

The remainder of this section is of interest only if you want to add new error codes to OpenSSL or add
error codes from external libraries.

2002-07-10 215

err(3)

OpenSSL err(3)

Reporting errors

Each sub-library has a specific magnéXerr()that is used to report errors. Its first argument is a func-
tion codeXXX_F_..., the second argument is a reason ¢od¢ R_.... Function codes are derived from

the function names; reason codes consist of textual error descriptions. For example, the function
ssl23_read(yeports a “handshake failure” as follows:

SSLerr(SSL_F_SSL23_READ, SSL_R_SSL_HANDSHAKE_FAILURE);

Function and reason codes should consist of upper case characters, numbers and underscores only. The
error file generation script translates function codes into function names by looking in the header files
for an appropriate function name, if none is found it just uses the capitalized form such as

“ SSL23_READ in the above example.

The trailing section of a reason code (after the “ R ") is translated into lower case and underscores
changed to spaces.

When you are using new function or reason codesmaike errors. The necessarydefines will then
automatically be added to the sub-library’s header file.

Although a library will normally report errors using its own specific XXXerr macro, another library’s
macro can be used. This is normally only done when a library wants to imdtdecode which must
use theASN1err()macro.

Adding new libraries

When adding a new sub-library to OpenSSL, assign it a library nupfserLIB_XXX , define a macro
XXXerr() (both in err.h), add its name tdERR_str_libraries[] (in crypto/err/err.c), and add
ERR_load_XXX_strings() to theERR _load_crypto_stringstunction (incrypto/err/err_all.c).
Finally, add an entry

L XXX xxx.h xxx_err.c

to crypto/err/openssl.ec, and adeixx_err.c to the Makefile. Runningnake errors will then generate
a filexxx_err.c, and add all error codes used in the libranptah.

Additionally the library include file must have a certain form. Typically it will initially look like this:

#ifndef HEADER_XXX_H
#define HEADER_XXX_H

#ifdef __ cplusplus
extern "C" {
#endif

/* Include files */

#include <openssl/bio.h>
#include <openssl/x509.h>

/* Macros, structures and function prototypes */
/* BEGIN ERROR CODES */

The BEGIN ERROR CODES sequence is used by the error code generation script as the point to place
new error codes, any text after this point will be overwritten wimake errors is run. The closing
#endif etc will be automatically added by the script.

The generated C error code fiexx_err.c will load the header filestdio.h, openssl/err.h and
openssl/xxx.hso the header file must load any additional header files containing any definitions it uses.

USING ERROR CODES IN EXTERNAL LIBRARIES

216

It is also possible to use OpenSSL's error code scheme in external libraries. The library needs to load its
own codes and call the OpenSSL error code insertion sokiptr.pl explicitly to add codes to the
header file and generate the C error code file. This will normally be done if the external library needs to
generate newSN1 structures but it can also be used to add more general purpose error code handling.

TBA more details

2002-07-10 0.9.7c

err(3) OpenSSL err(3)

INTERNALS
The error queues are stored in a hash table wittEBRe STATE entry for each pidERR_get_state()
returns the current thread®RR_STATE. An ERR_STATE can hold up t&ERR_NUM_ERRORS error

codes. When more error codes are added, the old ones are overwritten, on the assumption that the most
recent errors are most important.

Error strings are also stored in hash table. The hash tables can be obtained by calling
ERR_get_err_state table(void) and ERR_get_string_table(void) respectively.

SEE ALSO
CRYPTO_set_id_callba¢R), CRYPTO_set_locking_callba(®), ERR_get_erro(3),
ERR_GET_LIRE3), ERR_clear_erro(3), ERR_error_string3), ERR_print_errorg3),

ERR_load_crypto_strind8), ERR_remove_staf8), ERR_put _erro(3), ERR_load_string€3),
SSL_get_errof3)

0.9.7c 2002-07-10 217

ERR_clear_error(3) OpenSSL

NAME
ERR_clear_error — clear the error queue

SYNOPSIS
#include <openssl/err.h>

void ERR_clear_error(void);

DESCRIPTION
ERR_clear_error(empties the current thread’s error queue.

RETURN VALUES
ERR_clear_error(has no return value.

SEE ALSO
err (3), ERR_get_errof3)

HISTORY
ERR_clear_error()s available in all versions of SSLeay and OpenSSL.

218 2000-02-01

ERR_clear_error(3)

0.9.7¢c

ERR_error_string(3) OpenSSL ERR_error_string(3)

NAME
ERR_error_string, ERR_error_string_n, ERR_lib_error_string, ERR_func_error_string, ERR_rea-
son_error_string — obtain human-readable error message

SYNOPSIS
#include <openssl/err.h>

char *ERR_error_string(unsigned long e, char *buf);
char *ERR_error_string_n(unsigned long e, char *buf, size_t len);

const char *ERR_lib_error_string(unsigned long e);
const char *ERR_func_error_string(unsigned long e);
const char *ERR_reason_error_string(unsigned long e);

DESCRIPTION
ERR_error_string()jgenerates a human-readable string representing the erroecadd places it at
buf. buf must be at least 120 bytes longblff is NULL, the error string is placed in a static buffer.
ERR_error_string_n()s a variant oERR_error_string(that writes at moden characters (including
the terminating 0) and truncates the string if necessary.ER®&_error_string_n()buf may not be
NULL .

The string will have the following format:
error:[error code]:[library name]:[function name]:[reason string]

error codeis an 8 digit hexadecimal numbéhrary name function nameandreason stringare ASCII
text.

ERR_lib_error_string() ERR_func_error_string(and ERR_reason_error_string()eturn the library
name, function name and reason string respectively.

The OpenSSL error strings should be loaded by caliRB_load_crypto_strind8) or, for SSL appli-
cations,SSL_load_error_string®) first. If there is no text string registered for the given error code,
the error string will contain the numeric code.

ERR_print_errorg3) can be used to print all error codes currently in the queue.

RETURN VALUES
ERR_error_string(returns a pointer to a static buffer containing the stridyfif== NULL , buf other-
wise.

ERR_lib_error_string() ERR_func_error_string(and ERR_reason_error_string@eturn the strings,
andNULL if none is registered for the error code.

SEE ALSO
err (3), ERR_get_erro(3), ERR_load_crypto_strind8), SSL_load_error_string8)
ERR_print_errorg¢3)

HISTORY

ERR_error_string()is available in all versions of SSLeay and OpenSERR_error_string_n(was
added in OpenSSL 0.9.6.

0.9.7c 2000-09-14 219

ERR_get_error(3) OpenSSL ERR_get_error(3)

NAME
ERR_get_error, ERR_peek_error, ERR_peek last_error, ERR_get_error_line, ERR_peek_error_line,
ERR_peek last_error_line, ERR_get_error_line_data, ERR_peek_error_line_data,
ERR_peek last_error_line_data — obtain error code and data

SYNOPSIS

#include <openssl/err.h>

unsigned long ERR_get_error(void);
unsigned long ERR_peek_error(void);
unsigned long ERR_peek_last_error(void);

unsigned long ERR_get_error_line(const char **file, int *line);
unsigned long ERR_peek_error_line(const char **file, int *line);
unsigned long ERR_peek_last_error_line(const char **file, int *line);

unsigned long ERR_get_error_line_data(const char **file, int *line,
const char **data, int *flags);

unsigned long ERR_peek_error_line_data(const char **file, int *line,
const char **data, int *flags);

unsigned long ERR_peek_last_error_line_data(const char **file, int *line,
const char **data, int *flags);

DESCRIPTION
ERR_get_error(yeturns the earliest error code from the thread’s error queue and removes the entry.
This function can be called repeatedly until there are no more error codes to return.

ERR_peek_error(eturns the earliest error code from the thread’s error queue without modifying it.
ERR_peek last_error(eturns the latest error code from the thread’s error queue without modifying it.

See ERR_GET_LIE3) for obtaining information about location and reason of the error, and
ERR_error_string3) for human-readable error messages.

ERR_get_error_line()ERR_peek_error_line(and ERR_peek_last_error_line@re the same as the
above, but they additionally store the file name and line number where the error occufiedaind*
*line, unless these amULL .

ERR_get_error_line_data()ERR_peek_error_line_data@nd ERR_get_last_error_line_data@tore
additional data and flags associated with the error coddata’and *flags, unless these axeJLL .

*data contains a string if ffags&ERR_TXT_STRING. If it has been allocated BYPENSSL_malloc()
*flags& ERR_TXT_MALLOCED s true.

RETURN VALUES
The error code, or O if there is no error in the queue.

SEE ALSO
err (3), ERR_error_string3), ERR_GET_LIE3)

HISTORY
ERR_get_error() ERR_peek_error()ERR_get_error_line(and ERR_peek_error_line(@@re available
in all versions of SSLeay and OpenS&RR_get_error_line_datagndERR_peek_error_line_data()
were added in SSLeay 0.9.0.ERR_peek_ last _error() ERR_peek_last_error_line() and
ERR_peek_last_error_line_datagere added in OpenSSL 0.9.7.

220 2002-11-29 0.9.7c

ERR_GET_LIB(3) OpenSSL ERR_GET_LIB(3)

NAME

ERR_GET LIB, ERR_GET_FUNC, ERR_GET_REASON - get library, function and reason code

SYNOPSIS

#include <openssl/err.h>

int ERR_GET_LIB(unsigned long e);

int ERR_GET_FUNC(unsigned long e);

int ERR_GET_REASON(unsigned long e);

DESCRIPTION

The error code returned WBRR_get_error()consists of a library number, function code and reason
code.ERR_GET_LIB), ERR_GET_FUNQ andERR_GET_REAS{Ncan be used to extract these.

The library number and function code describe where the error occurred, the reason code is the infor-
mation about what went wrong.

Each sub-library of OpenSSL has a unique library number; function and reason codes are unique within
each sub-library. Note that different libraries may use the same value to signal different functions and
reasons.

ERR_R ... reason codes such &RR_R_MALLOC_FAILURE are globally unique. However, when
checking for sub-library specific reason codes, be sure to also compare the library number.

ERR_GET_LIB), ERR_GET_FUNQ andERR_GET_REAS{Nare macros.

RETURN VALUES

The library number, function code and reason code respectively.

SEE ALSO

err (3), ERR_get_errof3)

HISTORY

0.9.7c

ERR_GET_LIB), ERR_GET_FUNQ and ERR_GET_REAS{Nare available in all versions of SSLeay
and OpenSSL.

2000-02-01 221

ERR_load_crypto_strings(3) OpenSSL ERR_load_crypto_strings(3)

NAME
ERR_load_crypto_strings, SSL_load_error_strings, ERR_free_strings — load and free error strings

SYNOPSIS
#include <openssl/err.h>
void ERR_load_crypto_strings(void);
void ERR_free_strings(void);
#include <openssl/ssl.h>
void SSL_load_error_strings(void);

DESCRIPTION
ERR_load_crypto_strings() registers the error strings for alllibcrypto functions.
SSL_load_error_strings@joes the same, but also registerdlities| error strings.

One of these functions should be called before generating textual error messages. However, this is not
required when memory usage is an issue.

ERR_free_strings(yees all previously loaded error strings.

RETURN VALUES
ERR_load_crypto_strings(®SL_load_error_strings@ndERR_free_stringsfeturn no values.

SEE ALSO
err (3), ERR_error_string3)

HISTORY
ERR_load_error_strings()SSL_load_error_strings@nd ERR_free_strings(are available in all ver-
sions of SSLeay and OpenSSL.

222 2000-02-24 0.9.7c

ERR_load_strings(3) OpenSSL ERR_load_strings(3)

NAME
ERR_load_strings, ERR_PACK, ERR_get_next_error_library — load arbitrary error strings

SYNOPSIS
#include <openssl/err.h>
void ERR_load_strings(int lib, ERR_STRING_DATA str[]);
int ERR_get _next_error_library(void);
unsigned long ERR_PACK(int lib, int func, int reason);
DESCRIPTION
ERR_load_strings@egisters error strings for library numbir.
str is an array of error string data:

typedef struct ERR_string_data_st
{

unsigned long error;
char *string;
} ERR_STRING_DATA;

The error code is generated from the library number and a function and reasorercodes
ERR_PACK(Iib, func, reason). ERR_PACK) is a macro.

The last entry in the array is {0,0}.

ERR_get _next_error_library@an be used to assign library numbers to user libraries at runtime.

RETURN VALUE

ERR_load_strings@eturns no valueERR_PACK) return the error codeERR_get _next_error_library()
returns a new library number.

SEE ALSO
err (3), ERR_load_string&3)

HISTORY

ERR_load_error_strings(and ERR_PACK) are available in all versions of SSLeay and OpenSSL.
ERR_get _next_error_library(yas added in SSLeay 0.9.0.

0.9.7c 2000-02-24 223

ERR_print_errors(3) OpenSSL ERR_print_errors(3)

NAME
ERR_print_errors, ERR_print_errors_fp — print error messages

SYNOPSIS
#include <openssl/err.h>

void ERR_print_errors(BIO *bp);
void ERR_print_errors_fp(FILE *fp);

DESCRIPTION
ERR_print_errors(iis a convenience function that prints the error strings for all errors that OpenSSL
has recorded tbp, thus emptying the error queue.

ERR_print_errors_fp(is the same, except that the output goesRin&.
The error strings will have the following format:
[pid]:error:[error code]:[library name]:[function name]:[reason string]:[file name]:[line]:[optional text message]

error codeis an 8 digit hexadecimal numbéhrary name function nameandreason stringare ASCII
text, as ioptional text messageone was set for the respective error code.

If there is no text string registered for the given error code, the error string will contain the numeric
code.

RETURN VALUES
ERR_print_errors(andERR_print_errors_fp(Jeturn no values.

SEE ALSO
err (3), ERR_error_string3), ERR_get_erro3), ERR_load_crypto_strind8),
SSL_load_error_string8)

HISTORY

ERR_print_errors(andERR_print_errors_fp(are available in all versions of SSLeay and OpenSSL.

224 2000-02-01 0.9.7c

ERR_put_error(3) OpenSSL ERR_put_error(3)

NAME
ERR_put_error, ERR_add_error_data — record an error

SYNOPSIS
#include <openssl/err.h>

void ERR_put_error(int lib, int func, int reason, const char *file,
int line);
void ERR_add_error_data(int num, ...);
DESCRIPTION
ERR_put_error(adds an error code to the thread’s error queue. It signals that the error of reason code

reasonoccurred in functiorfunc of library lib, in line numberline of file. This function is usually
called by a macro.

ERR_add_error_data(@ssociates the concatenation ofritsn string arguments with the error code
added last.

ERR_load_string€3) can be used to register error strings so that the application can a generate human-
readable error messages for the error code.

RETURN VALUES
ERR_put_error(andERR_add_error_dataeturn no values.

SEE ALSO
err (3), ERR_load_string&3)

HISTORY
ERR_put_error()is available in all versions of SSLeay and OpenSERR_add_error_data(jvas
added in SSLeay 0.9.0.

0.9.7c 2000-02-24 225

ERR_remove_state(3) OpenSSL ERR_remove_state(3)

NAME
ERR_remove_state - free a thread’s error queue

SYNOPSIS
#include <openssl/err.h>

void ERR_remove_state(unsigned long pid);

DESCRIPTION
ERR_remove_statefees the error queue associated with thygdd If pid == 0, the current thread
will have its error queue removed.

Since error queue data structures are allocated automatically for new threads, they must be freed when
threads are terminated in order to avoid memory leaks.

RETURN VALUE
ERR_remove_state@turns no value.

SEE ALSO
err(3)

HISTORY
ERR_remove_statef available in all versions of SSLeay and OpenSSL.

226 2000-05-19 0.9.7c

evp(3) OpenSSL evp(3)

NAME
evp — high—level cryptographic functions

SYNOPSIS
#include <openssl/evp.h>

DESCRIPTION
TheEVP library provides a high-level interface to cryptographic functions.

EVP_Seal...and EVP_Open... provide public key encryption and decryption to implement digital
“envelopes”.

The EVP_Sign...andEVP_Verify... functions implement digital signatures.

Symmetric encryption is available with tB&/P_Encrypt... functions. TheEVP_Digest.. functions
provide message digests.

Algorithms are loaded wit®penSSL_add_all_algorithr(i3).

All the symmetric algorithms (ciphers) and digests can be replacé&NGYNE modules providing
alternative implementations. BENGINE implementations of ciphers or digests are registered as defaults,
then the variougVP functions will automatically use those implementations automatically in prefer-
ence to built in software implementations. For more information, consudntiiee(3) man page.

SEE ALSO
EVP_DigestIni(3), EVP_Encryptini{3), EVP_Openlni{3), EVP_Seallni{3), EVP_SignIni{3),
EVP_Verifylnit(3), OpenSSL_add_all_algorithr(3), enging(3)

0.9.7c 2002-08-05 227

EVP_Digestlnit(3) OpenSSL EVP_Digestlnit(3)

NAME

EVP_MD_CTX init, EVP_MD_CTX create, EVP_Digestlnit_ex, EVP_DigestUpdate, EVP_Digest-

Final_ex, EVP_MD_CTX_cleanup, EVP_MD_CTX_destroy, EVP_MAX_ MD_SIZE,
EVP_MD_CTX_copy_ex EVP_MD_CTX_copy, EVP_MD_type, EVP_MD_pkey type,
EVP_MD_size, EVP_MD_block_size, EVP_MD_CTX_md, EVP_MD_CTX_size,

EVP_MD_CTX_ block_size, EVP_MD_CTX type, EVP_md_null, EVP_md2, EVP_md5, EVP_sha,
EVP_shal, EVP_dss, EVP_dssl, EVP _mdc2, EVP_ripemd160, EVP_get digestbyname,
EVP_get_digestbynid, EVP_get digestbyobj — EVP digest routines

SYNOPSIS

#include <openssl/evp.h>
void EVP_MD_CTX _init(EVP_MD_CTX *ctx);
EVP_MD_CTX *EVP_MD_CTX_create(void);

int EVP_Digestlnit_ex(EVP_MD_CTX *ctx, const EVP_MD *type, ENGINE *impl);
int EVP_DigestUpdate(EVP_MD_CTX *ctx, const void *d, unsigned int cnt);
int EVP_DigestFinal_ex(EVP_MD_CTX *ctx, unsigned char *md,

unsigned int *s);

int EVP_MD_CTX_cleanup(EVP_MD_CTX *ctx);
void EVP_MD_CTX_destroy(EVP_MD_CTX *ctx);

int EVP_MD_CTX_copy_ex(EVP_MD_CTX *out,const EVP_MD_CTX *in);

int EVP_Digestlnit(EVP_MD_CTX *ctx, const EVP_MD *type);
int EVP_DigestFinal(EVP_MD_CTX *ctx, unsigned char *md,
unsigned int *s);

int EVP_MD_CTX_copy(EVP_MD_CTX *out,EVP_MD_CTX *in);
#define EVP_MAX_MD_SIZE (16+20) /* The SSLv3 md5+shal type */

#define EVP_MD _type(e) ((e)->type)

#define EVP_MD_pkey_type(e) ((e)->pkey_type)

#define EVP_MD_size(e) ((e)->md_size)

#define EVP_MD_block_size(e) ((e)->block_size)

#define EVP_MD_CTX_md(e) (e)->digest)

#define EVP_MD_CTX_size(e) EVP_MD_size((e)->digest)
#define EVP_MD_CTX block_size(e) EVP_MD_block_size((e)->digest)
#define EVP_MD_CTX type(e) EVP_MD_type((e)->digest)

const EVP_MD *EVP_md_null(void);
const EVP_MD *EVP_md2(void);

const EVP_MD *EVP_md5(void);

const EVP_MD *EVP_sha(void);

const EVP_MD *EVP_shal(void);
const EVP_MD *EVP_dss(void);

const EVP_MD *EVP_dss1(void);
const EVP_MD *EVP_mdc2(void);
const EVP_MD *EVP_ripemd160(void);

const EVP_MD *EVP_get_digestbyname(const char *name);
#define EVP_get_digestbynid(a) EVP_get digestbyname(OBJ_nid2sn(a))
#define EVP_get_digestbyobj(a) EVP_get digestbynid(OBJ_obj2nid(a))

DESCRIPTION

228

TheEVP digest routines are a high level interface to message digests.
EVP_MD_CTX init()nitializes digest contettx.
EVP_MD_CTX_create@llocates, initializes and returns a digest contet.

EVP_Digestlnit_ex(¥ets up digest contestx to use a digedype from ENGINE impl. ctx must be ini-
tialized before calling this functiotype will typically be supplied by a functionsuch BYP_shal()
If impl is NULL then the default implementation of digégte is used.

2002-07-18 0.9.7c

EVP_Digestlnit(3) OpenSSL EVP_Digestlnit(3)

EVP_DigestUpdate(hashesnt bytes of data atl into the digest contexttx. This function can be
called several times on the sante to hash additional data.

EVP_DigestFinal_ex()etrieves the digest value frooix and places it iimd. If the s parameter is not
NULL then the number of bytes of data written (i.e. the length of the digest) will be written to the inte-
ger ats, at mostEVP_MAX_MD_SIZE bytes will be written. After callind=VP_DigestFinal_ex(ho
additional calls t&eVP_DigestUpdate(@an be made, biEVP_Digestinit_ex(fan be called to initial-

ize a new digest operation.

EVP_MD_CTX_cleanup@leans up digest contegtx, it should be called after a digest context is no
longer needed.

EVP_MD_CTX_destroy@leans up digest contestx and frees up the space allocated to it, it should
be called only on a context created udiV®_MD_CTX_create()

EVP_MD_CTX_copy_exfan be used to copy the message digest stateifrtomout. This is useful if
large amounts of data are to be hashed which only differ in the last few doytesust be initialized
before calling this function.

EVP_Digestlnit()behaves in the same way BY¥P_DigestInit_ex(gxcept the passed contetk does
not have to be initialized, and it always uses the default digest implementation.

EVP_DigestFinal()is similar to EVP_DigestFinal_ex(kxcept the digest contetx is automatically
cleaned up.

EVP_MD_CTX_copy(s similar toEVP_MD_CTX_copy_exéxcept the destinatiasut does not have
to be initialized.

EVP_MD_size()Jand EVP_MD_CTX_ size(Jeturn the size of the message digest when passed an
EVP_MD or anEVP_MD_CTX structure, i.e. the size of the hash.

EVP_MD_block_size(and EVP_MD_CTX_block_sizefeturn the block size of the message digest
when passed a@vP_MD or anEVP_MD_CTX structure.

EVP_MD_type(Jand EVP_MD_CTX_type(Jeturn theNID of the OBJECT IDENTIFIERrepresenting
the given message digest when passed @&vP_MD structure. For example
EVP_MD_typeEVP_shal()) return®ID_shal This function is normally used when settingN1
OIDs.

EVP_MD_CTX_md()eturns theeVP_MD structure corresponding to the pasgE®®_MD_CTX.

EVP_MD_pkey_typefeturns theNID of the public key signing algorithm associated with this digest.
For exampleEVP_shal()s associated witlRSA so this will returnNID_shalWithRSAEncryption.

This “link” between digests and signature algorithms may not be retained in future versions of
OpenSSL.

EVP_md2() EVP_md5() EVP_sha(), EVP_shal() EVP_mdc2() and EVP_ripemd160() return
EVP_MD structures for thD2, MD5, SHA, SHA1, MDC2 and RIPEMD160digest algorithms respec-
tively. The associated signature algorithrR&A in each case.

EVP_dss(andEVP_dss1(yeturnEVP_MD structures folSHA and SHAL digest algorithms but using
DSS(DSA) for the signature algorithm.

EVP_md_nuli()s a “null” message digest that does nothing: i.e. the hash it returns is of zero length.

EVP_get_digestbyname(EVP_get_digestbynid(and EVP_get_digestbyobj(yeturn an EVP_MD
structure when passed a digest name, a digstor an ASN1_OBJECTSstructure respectively. The
digest table must be initialized using, for exam@eenSSL_add_all_digest$fr these functions to
work.

RETURN VALUES
EVP_Digestlnit_ex()EVP_DigestUpdate(and EVP_DigestFinal_ex(yeturn 1 for success and 0 for
failure.

EVP_MD_CTX_copy_ex(eturns 1 if successful or 0 for failure.

EVP_MD_type() EVP_MD_pkey type(and EVP_MD_type(return theNID of the corresponding
OBJECT IDENTIFIERor NID_undef if none exists.

EVP_MD_size() EVP_MD_block_size(), EVP_MD_CTX size(e), EVP_MD_size()
EVP_MD_CTX_block_size() andEVP_MD_block_size@eturn the digest or block size in bytes.

0.9.7c 2002-07-18 229

EVP_Digestlnit(3) OpenSSL EVP_Digestlnit(3)

EVP_md_null) EVP_md2() EVP_md5(), EVP_sha() EVP_shal() EVP_dss(), EVP_dss1()
EVP_mdc2(pndEVP_ripemd160(Jeturn pointers to the correspondiBgP_MD structures.

EVP_get_digestbyname()EVP_get_digestbynid()and EVP_get_digestbyobj()return either an
EVP_MD structure oNULL if an error occurs.

NOTES

TheEVP interface to message digests should almost always be used in preference to the low level inter-
faces. This is because the code then becomes transparent to the digest used and much more flexible.

SHAL is the digest of choice for new applications. The other digest algorithms are still in common use.

For most applications thenpl parameter t&&VP_Digestinit_ex(Jvill be set toNULL to use the default
digest implementation.

The functionsEVP_Digestlnit() EVP_DigestFinal(Jand EVP_MD_CTX_copy(are obsolete but are
retained to maintain compatibility with existing code. New applications shouldEW$t Diges-
tinit_ex(), EVP_DigestFinal_ex(and EVP_MD_CTX_copy_exflecause they can efficiently reuse a
digest context instead of initializing and cleaning it up on each call and allow non default implementa-
tions of digests to be specified.

In OpenSSL 0.9.7 and later if digest contexts are not cleaned up after use memory leaks will occur.

EXAMPLE

BUGS

230

This example digests the data “Test Message\n” and “Hello World\n”, using the digest name passed
on the command line.

#include <stdio.h>
#include <openssl/evp.h>

main(int argc, char *argv[])

{

EVP_MD_CTX mdctx;

const EVP_MD *md;

char messl[] = "Test Message\n";

char mess2[] = "Hello World\n";

unsigned char md_value[EVP_MAX_MD_SIZE];

intmd_len, i;

OpenSSL_add_all_digests();

if(fargv[1]) {
printf("Usage: mdtest digesthame\n");
exit(1);

}

md = EVP_get_digestbyname(argv[1]);

if('md) {

printf("Unknown message digest %s\n", argv[1]);
exit(1);
}

EVP_MD_CTX_init(&mdctx);
EVP_Digestlnit_ex(&mdctx, md, NULL);
EVP_DigestUpdate(&mdctx, messl, strlen(messl));
EVP_DigestUpdate(&mdctx, mess2, strlen(mess2));
EVP_DigestFinal_ex(&mdctx, md_value, &md_len);
EVP_MD_CTX_cleanup(&mdctx);

printf("Digest is: ");

for(i=0; i < md_len; i++) printf("%02x", md_valuel[i]);
printf("\n");

}

The link between digests and signing algorithms results in a situation B¥Ereshal(Imust be used
with RSAandEVP_dss1(jnust be used witbSSeven though they are identical digests.

2002-07-18 0.9.7c

EVP_Digestlnit(3) OpenSSL EVP_Digestlnit(3)

SEE ALSO

evp(3), hmac(3), md2(3), md5(3), mdc2(3), ripemd(3), sha(3), dgst(1)

HISTORY

0.9.7c

EVP_Digestlnit() EVP_DigestUpdate@ndEVP_DigestFinal(are available in all versions of SSLeay
and OpenSSL.

EVP_MD_CTX_init)EVP_MD_CTX_create(EVP_MD_CTX copy_ex@EVP_MD_CTX_cleanup()
EVP_MD_CTX_destroy,)EVP_Digestlnit_ex(Jand EVP_DigestFinal_ex(Wwere added in OpenSSL
0.9.7.

EVP_md_null) EVP_md2() EVP_md5(), EVP_sha() EVP_shal() EVP_dss(), EVP_dss1()
EVP_mdc2(andEVP_ripemd160(jvere changed to return truely coestP_MD * in OpenSSL 0.9.7.

2002-07-18 231

EVP_Encryptlnit(3) OpenSSL EVP_Encryptlnit(3)

NAME
EVP_CIPHER_CTX init, EVP_Encryptinit_ ex, EVP_EncryptUpdate, EVP_EncryptFinal_ex,
EVP_Decryptinit_ex, EVP_DecryptUpdate, EVP_DecryptFinal_ex, EVP_Cipherlnit_ex,
EVP_CipherUpdate, EVP_CipherFinal_ex, EVP_CIPHER_CTX set key_length,
EVP_CIPHER_CTX ctrl, EVP_CIPHER_CTX cleanup, EVP_Encryptinit, EVP_EncryptFinal,
EVP_Decryptinit, EVP_DecryptFinal, EVP_Cipherlinit, EVP_CipherFinal, EVP_get cipherbyname,
EVP_get cipherbynid, EVP_get cipherbyobj, EVP_CIPHER_ nid, EVP_CIPHER_block_size,
EVP_CIPHER_key length, EVP_CIPHER_ iv_length, EVP_CIPHER flags, EVP_CIPHER_mode,
EVP_CIPHER_type, EVP_CIPHER_CTX_cipher, EVP_CIPHER_CTX_nid,
EVP_CIPHER_CTX block _size, EVP_CIPHER_CTX_ key length, EVP_CIPHER_CTX iv_length,
EVP_CIPHER_CTX get app_data, EVP_CIPHER_CTX set app _data, EVP_CIPHER_CTX type,

EVP_CIPHER_CTX flags, EVP_CIPHER_CTX_ mode, EVP_CIPHER_param_to_asnl,
EVP_CIPHER _asnl to param, EVP_CIPHER_CTX_ set padding — EVP cipher routines
SYNOPSIS

#include <openssl/evp.h>
int EVP_CIPHER_CTX _init(EVP_CIPHER_CTX *a);

int EVP_Encryptinit_ex(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *type,
ENGINE *impl, unsigned char *key, unsigned char *iv);

int EVP_EncryptUpdate(EVP_CIPHER_CTX *ctx, unsigned char *out,
int *outl, unsigned char *in, int inl);

int EVP_EncryptFinal_ex(EVP_CIPHER_CTX *ctx, unsigned char *out,
int *outl);

int EVP_Decryptlnit_ex(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *type,
ENGINE *impl, unsigned char *key, unsigned char *iv);

int EVP_DecryptUpdate(EVP_CIPHER_CTX *ctx, unsigned char *out,
int *outl, unsigned char *in, int inl);

int EVP_DecryptFinal_ex(EVP_CIPHER_CTX *ctx, unsigned char *outm,
int *outl);

int EVP_Cipherlnit_ex(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *type,
ENGINE *impl, unsigned char *key, unsigned char *iv, int enc);
int EVP_CipherUpdate(EVP_CIPHER_CTX *ctx, unsigned char *out,
int *outl, unsigned char *in, int inl);
int EVP_CipherFinal_ex(EVP_CIPHER_CTX *ctx, unsigned char *outm,
int *outl);

int EVP_Encryptinit(EVP_CIPHER _CTX *ctx, const EVP_CIPHER *type,
unsigned char *key, unsigned char *iv);

int EVP_EncryptFinal(EVP_CIPHER_CTX *ctx, unsigned char *out,
int *outl);

int EVP_Decryptlnit(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *type,
unsigned char *key, unsigned char *iv);

int EVP_DecryptFinal(EVP_CIPHER_CTX *ctx, unsigned char *outm,
int *outl);

int EVP_Cipherlnit(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *type,
unsigned char *key, unsigned char *iv, int enc);

int EVP_CipherFinal(EVP_CIPHER_CTX *ctx, unsigned char *outm,
int *outl);

int EVP_CIPHER_CTX_set_padding(EVP_CIPHER_CTX *x, int padding);

int EVP_CIPHER_CTX_set_key length(EVP_CIPHER_CTX *x, int keylen);

int EVP_CIPHER_CTX_ctrl(EVP_CIPHER_CTX *ctx, int type, int arg, void *ptr);
int EVP_CIPHER_CTX_cleanup(EVP_CIPHER_CTX *a);

232 2002-10-18 0.9.7c

EVP_Encryptlnit(3) OpenSSL EVP_Encryptlnit(3)

const EVP_CIPHER *EVP_get_cipherbyname(const char *name);
#define EVP_get_cipherbynid(a) EVP_get_cipherbyname(OBJ_nid2sn(a))
#define EVP_get_cipherbyobj(a) EVP_get_cipherbynid(OBJ_obj2nid(a))

#define EVP_CIPHER_nid(e) ((e)->nid)

#define EVP_CIPHER_block_size(e) ((e)->block_size)

#define EVP_CIPHER_key length(e) ((e)->key_len)

#define EVP_CIPHER_iv_length(e) ((e)->iv_len)

#define EVP_CIPHER_flags(e) ((e)->flags)

#define EVP_CIPHER_mode(e) ((e)->flags) & EVP_CIPH_MODE)
int EVP_CIPHER type(const EVP_CIPHER *ctx);

#define EVP_CIPHER_CTX_cipher(e) ((e)->cipher)

#define EVP_CIPHER_CTX nid(e) ((e)->cipher->nid)

#define EVP_CIPHER_CTX_block_size(e) ((e)->cipher->block_size)
#define EVP_CIPHER_CTX key_length(e) ((e)->key_len)

#define EVP_CIPHER_CTX iv_length(e) ((e)->cipher->iv_len)

#define EVP_CIPHER_CTX get_app_data(e) ((e)->app_data)

#define EVP_CIPHER_CTX_ set _app_data(e,d) ((e)->app_data=(char *)(d))

#define EVP_CIPHER_CTX type(c) EVP_CIPHER_type(EVP_CIPHER_CTX cipher(c))
#define EVP_CIPHER_CTX_flags(e) ((e)->cipher->flags)
#define EVP_CIPHER_CTX_mode(e) ((e)->cipher->flags & EVP_CIPH_MODE)

int EVP_CIPHER param_to_asnl(EVP_CIPHER_CTX *c, ASN1_TYPE *type);
int EVP_CIPHER asnl to param(EVP_CIPHER_CTX *c, ASN1_TYPE *type);

DESCRIPTION

0.9.7c

TheEVP cipher routines are a high level interface to certain symmetric ciphers.
EVP_CIPHER_CTX init(nitializes cipher contegtx.

EVP_Encryptlnit_ex(sets up cipher contextx for encryption with ciphetype from ENGINE impl.
ctx must be initialized before calling this functialype is normally supplied by a function such as
EVP_des_cbc(). limpl is NULL then the default implementation is uskey is the symmetric key to
use andv is thelV to use (if necessary), the actual number of bytes used for the ké&y dadends on
the cipher. It is possible to set all parameterdNtiLL excepttype in an initial call and supply the
remaining parameters in subsequent calls, all of which tygeeset toNULL. This is done when the
default cipher parameters are not appropriate.

EVP_EncryptUpdate(gncryptsinl bytes from the buffem and writes the encrypted versiondaot.

This function can be called multiple times to encrypt successive blocks of data. The amount of data
written depends on the block alignment of the encrypted data: as a result the amount of data written
may be anything from zero bytes to (inl + cipher_block_size — I9usloshould contain sufficient

room. The actual number of bytes written is placealith.

If padding is enabled (the default) thENP_EncryptFinal_ex(gncrypts the “final” data, that is any
data that remains in a partial block. It uses standard block paddingKakspadding). The encrypted
final data is written taut which should have sufficient space for one cipher block. The number of
bytes written is placed iautl. After this function is called the encryption operation is finished and no
further calls ta&EVP_EncryptUpdate@hould be made.

If padding is disabled theBVP_EncryptFinal_ex(@vill not encrypt any more data and it will return an
error if any data remains in a partial block: that is if the total data length is not a multiple of the block
size.

EVP_Decryptinit_ex() EVP_DecryptUpdate()and EVP_DecryptFinal_ex()are the corresponding
decryption operation&€VP_DecryptFinal(will return an error code if padding is enabled and the final
block is not correctly formatted. The parameters and restrictions are identical to the encryption opera-
tions except that if padding is enabled the decrypted data louffgrassed taeVP_DecryptUpdate()
should have sufficient room fom(+ cipher_block_size) bytes unless the cipher block size is 1 in
which caseénl bytes is sufficient.

EVP_Cipherlnit_ex()EVP_CipherUpdate(®ndEVP_CipherFinal_ex(are functions that can be used
for decryption or encryption. The operation performed depends on the valueesfctharameter. It
should be set to 1 for encryption, 0 for decryption and -1 to leave the value unchanged (the actual value

2002-10-18 233

EVP_Encryptlnit(3) OpenSSL EVP_Encryptlnit(3)

234

of 'enc’ being supplied in a pvous call).

EVP_CIPHER_CTX cleanup€)ears all information from a cipher context and free up any allocated
memory associate with it. It should be called after all operations using a cipher are complete so sensi-
tive information does not remain in memory.

EVP_Encryptinit() EVP_DecryptinitJandEVP_Cipherinit()behave in a similar way t&VP_Encryp-
tinit_ex(), EVP_Decryptinit_ex anBVP_Cipherlnit_ex(except thectx paramter does not need to be
initialized and they always use the default cipher implementation.

EVP_EncryptFinal() EVP_DecryptFinal() and EVP_CipherFinal() behave in a similar way to
EVP_Encryptihal_ex() EVP_DecryptFinal_ex(and EVP_CipherFinal_ex(exceptctx is automati-
cally cleaned up after the call.

EVP_get_cipherbyname@VP_get cipherbynid@ndEVP_get_cipherbyobjfeturn anEvP_CIPHER
structure when passed a cipher namepaor anASN1_OBJECTSstructure.

EVP_CIPHER_ nid()and EVP_CIPHER_CTX_nid(yeturn theNID of a cipher when passed an
EVP_CIPHER or EVP_CIPHER_CTX structure. The actuaID value is an internal value which may
not have a correspondit@BJECT IDENTIFIER

EVP_CIPHER_CTX set_paddingdhables or disables padding. By default encryption operations are
padded using standard block padding and the padding is checked and removed when decrypting. If the
pad parameter is zero then no padding is performed, the total amount of data encrypted or decrypted
must then be a multiple of the block size or an error will occur.

EVP_CIPHER_ key lengthgnd EVP_CIPHER_CTX key length@turn the key length of a cipher
when passed an EVP_CIPHER or EVP_CIPHER CTX structure. The constant
EVP_MAX_KEY_LENGTH is the maximum key length for all ciphers. Note: although
EVP_CIPHER_key lengthi3 fixed for a given cipher, the value BVP_CIPHER_CTX_ key_length()
may be different for variable key length ciphers.

EVP_CIPHER_CTX set _key_lengtlsgts the key length of the cipher ctx. If the cipher is a fixed
length cipher then attempting to set the key length to any value other than the fixed value is an error.

EVP_CIPHER_iv_length@ndEVP_CIPHER_CTX iv_length(®turn thelv length of a cipher when
passed aVP_CIPHER or EVP_CIPHER_CTX. It will return zero if the cipher does not use lan
The constanEVP_MAX_IV_LENGTH is the maximumyvV length for all ciphers.

EVP_CIPHER block_size@gnd EVP_CIPHER_CTX_block_sizefgturn the block size of a cipher
when passed a@avP_CIPHER or EVP_CIPHER_CTX structure. The constaBvP_MAX_IV_LENGTH
is also the maximum block length for all ciphers.

EVP_CIPHER type@®ndEVP_CIPHER_CTX_type€eturn the type of the passed cipher or context.
This “type” is the actualNID of the ciphetOBJECT IDENTIFIERas such it ignores the cipher parame-
ters and 40 biRC2and 128 biRC2 have the samBID. If the cipher does not have an object identifier
or does not havaSN1 support this function will returNID_undef.

EVP_CIPHER_CTX cipherfeturns theevP_CIPHER structure when passed BNP_CIPHER_CTX
structure.

EVP_CIPHER_mode() and EVP_CIPHER_CTX_mode()return the block cipher mode:
EVP_CIPH_ECB_MODEEVP_CIPH_CBC_MODEEVP_CIPH_CFB_MODETI EVP_CIPH_OFB_MODEIf
the cipher is a stream cipher thevP_CIPH_STREAM_CIPHERS returned.

EVP_CIPHER_ param_to_asnlggts the Algorithmlidentifier “parameter” based on the passed cipher.
This will typically include any parameters andian The ciphenv (if any) must be set when this call

is made. This call should be made before the cipher is actually “used” (befofe\d@hyEncryptUp-
date(),EVP_DecryptUpdate@alls for example). This function may fail if the cipher does not have any
ASN1 support.

EVP_CIPHER asnl _to paramggets the cipher parameters based om@N1 Algorithmldentifier
“parameter”. The precise effect depends on the cipher In the caxezofor example, it will set thev

and effective key length. This function should be called after the base cipher type is set but before the
key is set. For exampl&VP_Cipherlnit() will be called with thelv and key set toNULL,
EVP_CIPHER_asnl_to_paramgjll be called and final\EVP_Cipherlnit()again with all parameters
except the key set toULL. It is possible for this function to fail if the cipher does not haveAsiyl

support or the parameters cannot be set (for exampkQheffective key length is not supported.

2002-10-18 0.9.7c

EVP_Encryptlnit(3) OpenSSL EVP_Encryptlnit(3)

EVP_CIPHER_CTX ctrl(pllows various cipher specific parameters to be determined and set. Cur-
rently only theRC2effective key length and the number of roundg©6 can be set.

RETURN VALUES
EVP_CIPHER_CTX_init,EVP_Encryptinit_ex()EVP_EncryptUpdate(and EVP_EncryptFinal_ex()
return 1 for success and O for failure.

EVP_Decryptinit_ex(@ndEVP_DecryptUpdate(eturn 1 for success and 0O for failuteVP_Decrypt-
Final_ex()returns 0O if the decrypt failed or 1 for success.

EVP_Cipherlnit_ex(andEVP_CipherUpdate(jeturn 1 for success and O for failuiéVP_CipherFi-
nal_ex() returns O for a decryption failure or 1 for success.

EVP_CIPHER_CTX_ cleanup@turns 1 for success and 0 for failure.

EVP_get_cipherbyname() EVP_get_cipherbynid() and EVP_get_cipherbyobj() return an
EVP_CIPHER structure oNULL on error.

EVP_CIPHER_nid(gndEVP_CIPHER_CTX_nidfeturn aNID.
EVP_CIPHER_block_size@ndEVP_CIPHER_CTX block_sizefturn the block size.
EVP_CIPHER_key lengthéndEVP_CIPHER_CTX_key lengthfturn the key length.
EVP_CIPHER_CTX set padding(ays returns 1.

EVP_CIPHER_iv_length(and EVP_CIPHER_CTX iv_lengthfeturn thelv length or zero if the
cipher does not use aw.

EVP_CIPHER type@ndEVP_CIPHER_CTX_ type(eturn theNID of the cipher'sOBJECT IDENTI-
FIER or NID_undef if it has no definedBJECT IDENTIFIER

EVP_CIPHER_CTX_ cipher(eturns areVP_CIPHER structure.

EVP_CIPHER_ param_to_asnldhdEVP_CIPHER_ asnl _to param@turn 1 for success or zero for
failure.

CIPHER LISTING
All algorithms have a fixed key length unless otherwise stated.

EVP_enc_null()
Null cipher: does nothing.

EVP_des_cbc(void), EVP_des_ecb(void), EVP_des_cfb(void), EVP_des_ofb(void)
DESin CBC, ECB, CFB andOFB modes respectively.

EVP_des_ede_cbc(voidtVP_des_ede(), EVP_des_ede_ofb(void), EVP_des_ede_cfb(void)
Two key tripleDESin CBC, ECB, CFB andOFB modes respectively.

EVP_des_ede3_chc(voiBdVP_des_ede3(), EVP_des_ede3_ofb(void), EVP_des_ede3_cfb(void)
Three key tripledDESin CBC, ECB, CFB andOFB modes respectively.

EVP_desx_cbc(void)
DESX algorithm inCBC mode.
EVP_rc4(void)
RC4stream cipher. This is a variable key length cipher with default key length 128 bits.
EVP_rc4_40(void)
RC4 stream cipher with 40 bit key length. This is obsolete and new code shouttVBsec4()
and theeEVP_CIPHER_CTX_ set_key_length(hction.
EVP_idea_cbc() EVP_idea_ ech(void), EVP_idea_ cfb(void), EVP_idea_ofb(void),
EVP_idea cbc(void)
IDEA encryption algorithm ir€BC, ECB, CFB andOFB modes respectively.
EVP_rc2_chc(void), EVP_rc2_ecb(void), EVP_rc2_cfb(void), EVP_rc2_ofb(void)
RC2 encryption algorithm irCBC, ECB, CFB and OFB modes respectively. This is a variable key

length cipher with an additional parameter called “effective key bits” or “effective key length”.
By default both are set to 128 bits.

0.9.7c 2002-10-18 235

EVP_Encryptlnit(3) OpenSSL EVP_Encryptlnit(3)

EVP_rc2_40 cbc(@id), EVP_rc2_64 cbhc(void)
RC2 algorithm inCBC mode with a default key length and effective key length of 40 and 64 bits.
These are obsolete and new code should usdeVP_rc2_cbce(),
EVP_CIPHER_CTX set key lengtlaf)d EVP_CIPHER_CTX_ ctrl(Yo set the key length and
effective key length.

EVP_bf cbc(void), EVP_bf ecb(void), EVP_bf cfb(void), EVP_bf ofb(void);
Blowfish encryption algorithm i€BC, ECB, CFB and OFB modes respectively. This is a variable
key length cipher.

EVP_cast5 cbc(void), EVP_cast5_ech(void), EVP_cast5_cfb(void), EVP_cast5 ofb(void)
CAST encryption algorithm irfCBC, ECB, CFB andOFB modes respectively. This is a variable key
length cipher.

EVP _rc5 32 12 16 chc(void), EVP_rc5 32 12 16 ech(void), EVP_rc5 32 12 16 cfb(void),
EVP_rc5 32 12 16 ofb(void)
RC5 encryption algorithm irCBC, ECB, CFB and OFB modes respectively. This is a variable key
length cipher with an additional “number of rounds” parameter. By default the key length is set to
128 bits and 12 rounds.

NOTES

BUGS

Where possible theVP interface to symmetric ciphers should be used in preference to the low level
interfaces. This is because the code then becomes transparent to the cipher used and much more flexi-
ble.

PKCS padding works by adding padding bytes of value to make the total length of the encrypted

data a multiple of the block size. Padding is always added so if the data is already a multiple of the
block sizen will equal the block size. For example if the block size is 8 and 11 bytes are to be
encrypted then 5 padding bytes of value 5 will be added.

When decrypting the final block is checked to see if it has the correct form.

Although the decryption operation can produce an error if padding is enabled, it is not a strong test that
the input data or key is correct. A random block has better than 1 in 256 chance of being of the correct
format and problems with the input data earlier on will not produce a final decrypt error.

If padding is disabled then the decryption operation will always succeed if the total amount of data
decrypted is a multiple of the block size.

The functionsEVP_Encryptinit() EVP_EncryptFinal() EVP_Decryptinit() EVP_Cipherlnit() and
EVP_CipherFinal(Jare obsolete but are retained for compatibility with existing code. New code should
use EVP_Encryptinit_ex() EVP_EncryptFinal_ex()EVP_Decryptlnit_ex() EVP_DecryptFinal_ex(),
EVP_Cipherlnit_ex(and EVP_CipherFinal_ex(pecause they can reuse an existing context without
allocating and freeing it up on each call.

ForRC5the number of rounds can currently only be set to 8, 12 or 16. This is a limitation of the current
RC5code rather than tH&vP interface.

EVP_MAX_KEY_LENGTH and EVP_MAX_IV_LENGTH only refer to the internal ciphers with default

key lengths. If custom ciphers exceed these values the results are unpredictable. This is because it has
become standard practice to define a generic key as a fixed unsigned char array containing
EVP_MAX_KEY_LENGTH bytes.

The ASNL1 code is incomplete (and sometimes inaccurate) it has only been tested for certain common
S/MIME ciphers RC2, DES, triple DES) in CBC mode.

EXAMPLES

236

Get the number of rounds usedR@5:

int nrounds;
EVP_CIPHER_CTX ctrl(ctx, EVP_CTRL_GET_RC5_ROUNDS, 0, &nrounds);

Get theRC2effective key length:

int key_bits;
EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_GET_RC2_KEY_BITS, 0, &key_bits);

Set the number of rounds usedri@5s:

2002-10-18 0.9.7c

EVP_Encryptlnit(3) OpenSSL EVP_Encryptlnit(3)

int nrounds;
EVP_CIPHER_CTX ctrl(ctx, EVP_CTRL_SET_RC5 ROUNDS, nrounds, NULL);

Set the effective key length usedRg2:

int key_bits;
EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_SET_RC2_KEY_BITS, key_bits, NULL);

Encrypt a string using blowfish:

int do_crypt(char *outfile)
{
unsigned char outbuf[1024];
int outlen, tmplen;
/* Bogus key and IV: we'd normally set these from
* another source.
*/
unsigned char key[] ={0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15};
unsigned char iv[]] ={1,2,3,4,5,6,7,8};
char intext[] = "Some Crypto Text";
EVP_CIPHER_CTX ctx;
FILE *out;
EVP_CIPHER_CTX_init(&ctx);
EVP_Encryptlnit_ex(&ctx, EVP_bf chc(), NULL, key, iv);

ifl(EVP_EncryptUpdate(&ctx, outbuf, &outlen, intext, strlen(intext)))
{

/* Error */
return O;

[* Buffer passed to EVP_EncryptFinal() must be after data just
* encrypted to avoid overwriting it.

*/
ifl(EVP_EncryptFinal_ex(&ctx, outbuf + outlen, &tmplen))
{
[* Error */
return O;
}

outlen +=tmplen;

EVP_CIPHER_CTX_ cleanup(&ctx);

/* Need binary mode for fopen because encrypted data is
* binary data. Also cannot use strlen() on it because
* it wont be null terminated and may contain embedded
* nulls.
*/

out = fopen(outfile, "wh");

fwrite(outbuf, 1, outlen, out);

fclose(out);

return 1,

}

The ciphertext from the above example can be decrypted usimapéimssiutility with the command
line:

S<openssl bf -in cipher.bin -K 000102030405060708090A0BOCODOEOF -iv 0102030405060708 -d>
General encryption, decryption function example usimg I/O andRC2with an 80 bit key:

0.9.7c 2002-10-18 237

EVP_Encryptlnit(3) OpenSSL EVP_Encryptlnit(3)

int do_crypt(FILE *in, FILE *out, int do_encrypt)
{
/* Allow enough space in output buffer for additional block */
inbuf[1024], outbuf[1024 + EVP_MAX_BLOCK_LENGTH];
int inlen, outlen;
/* Bogus key and IV: we'd normally set these from
* another source.
*/
unsigned char key[] = "0123456789";
unsigned char iv[] = "12345678";
/* Don't set key or IV because we will modify the parameters */
EVP_CIPHER_CTX_init(&ctx);
EVP_Cipherlnit_ex(&ctx, EVP_rc2(), NULL, NULL, NULL, do_encrypt);
EVP_CIPHER_CTX_ set_key length(&ctx, 10);
/* We finished modifying parameters so now we can set key and IV */
EVP_Cipherlnit_ex(&ctx, NULL, NULL, key, iv, do_encrypt);
for(;:)
{
inlen = fread(inbuf, 1, 1024, in);
if(inlen <= 0) break;
ifl(EVP_CipherUpdate(&ctx, outbuf, &outlen, inbuf, inlen))
{

/* Error */
return O;

}
fwrite(outbuf, 1, outlen, out);

}
iflEVP_CipherFinal_ex(&ctx, outbuf, &outlen))

{

[* Error */

return O;
fwrite(outbuf, 1, outlen, out);

EVP_CIPHER_CTX_ cleanup(&ctx);

return 1;
}
SEE ALSO
evp(3)
HISTORY
EVP_CIPHER_CTX init() EVP_Encryptinit_ex() EVP_EncryptFinal_ex() EVP_Decryptinit_ex()
EVP_DecryptFinal_ex() EVP_Cipherlnit_ex() EVP_CipherFinal_ex() and

EVP_CIPHER_CTX set padding(peared in OpenSSL 0.9.7.

238 2002-10-18 0.9.7c

EVP_Openlnit(3) OpenSSL EVP_Openlnit(3)

NAME
EVP_Openlnit, EVP_OpenUpdate, EVP_OpenFinal — EVP envelope decryption

SYNOPSIS
#include <openssl/evp.h>

int EVP_Openlnit(EVP_CIPHER_CTX *ctx,EVP_CIPHER *type,unsigned char *ek,
int ekl,unsigned char *iv,EVP_PKEY *priv);
int EVP_OpenUpdate(EVP_CIPHER _CTX *ctx, unsigned char *out,
int *outl, unsigned char *in, int inl);
int EVP_OpenFinal(EVP_CIPHER_CTX *ctx, unsigned char *out,
int *outl);

DESCRIPTION

The EVP envelope routines are a high level interface to envelope decryption. They decrypt a public key

encrypted symmetric key and then decrypt data using it.

EVP_Openlnit()initializes a cipher contexttx for decryption with ciphertype. It decrypts the
encrypted symmetric key of lengtkl bytes passed in thek parameter using the private kpyiv.
ThelV is supplied in thév parameter.

EVP_OpenUpdate@nd EVP_OpenFinal(have exactly the same properties asEN®_DecryptUp-
date()andEVP_DecryptFinal(youtines, as documented on t¢P_Encryptini{3) manual page.

NOTES
It is possible to calEVP_Openinit(fwice in the same way &VP_Decryptinit(). The first call should
havepriv set toNULL and (after setting any cipher parameters) it should be called agaitypétket
to NULL.

If the cipher passed in thigpe parameter is a variable length cipher then the key length will be set to
the value of the recovered key length. If the cipher is a fixed length cipher then the recovered key length

must match the fixed cipher length.
RETURN VALUES

EVP_Openlnit(yeturns 0 on error or a non zero integer (actually the recovered secret key size) if suc-

cessful.
EVP_OpenUpdatefeturns 1 for success or O for failure.
EVP_OpenFinal(yeturns 0 if the decrypt failed or 1 for success.

SEE ALSO
evp(3), rand(3), EVP_Encryptini(3), EVP_Seallnif3)

HISTORY

0.9.7c 2000-09-23 239

EVP_PKEY_new(3) OpenSSL EVP_PKEY_new(3)

NAME
EVP_PKEY_new, EVP_PKEY _free — private key allocation functions.

SYNOPSIS
#include <openssl/evp.h>

EVP_PKEY *EVP_PKEY_new(void);
void EVP_PKEY _free(EVP_PKEY *key);

DESCRIPTION
TheEVP_PKEY_new(unction allocates an empBvP_PKEY structure which is used by OpenSSL to
store private keys.

EVP_PKEY_free(lrees up the private keiey.

NOTES
The EVP_PKEY structure is used by various OpenSSL functions which require a general private key
without reference to any particular algorithm.

The structure returned lBVP_PKEY_new()s empty. To add a private key to this empty structure the
functions described iBVP_PKEY_setl R$3) should be used.

RETURN VALUES
EVP_PKEY_new(yeturns either the newly allocateglVP_PKEY structure of NULL if an error
occurred.

EVP_PKEY_free(oes not return a value.

SEE ALSO
EVP_PKEY_setl RS$3)

HISTORY
TBA

240 2002-10-09 0.9.7c

EVP_PKEY_setl RSA(3) OpenSSL EVP_PKEY_setl RSA(3)

NAME
EVP_PKEY_setl RSA, EVP_PKEY_setl DSA, EVP_PKEY_setl DH, EVP_PKEY_setl EC_KEY,
EVP_PKEY_getl RSA, EVP_PKEY_getl _DSA, EVP_PKEY_getl DH,
EVP_PKEY_getl EC_KEY, EVP_PKEY_assign_RSA, EVP_PKEY_assign_DSA,
EVP_PKEY_assign_DH, EVP_PKEY_assign_EC_KEY, EVP_PKEY_type — EVP_PKEY assignment
functions.

SYNOPSIS

#include <openssl/evp.h>

int EVP_PKEY_setl RSA(EVP_PKEY *pkey,RSA *key);

int EVP_PKEY_setl DSA(EVP_PKEY *pkey,DSA *key);

int EVP_PKEY_setl DH(EVP_PKEY *pkey,DH *key);

int EVP_PKEY_setl EC_KEY(EVP_PKEY *pkey,EC_KEY *key);

RSA *EVP_PKEY_getl RSA(EVP_PKEY *pkey);

DSA *EVP_PKEY_getl DSA(EVP_PKEY *pkey);

DH *EVP_PKEY_getl DH(EVP_PKEY *pkey);

EC_KEY *EVP_PKEY_getl EC_KEY(EVP_PKEY *pkey):

int EVP_PKEY_assign_RSA(EVP_PKEY *pkey,RSA *key);

int EVP_PKEY_assign_ DSA(EVP_PKEY *pkey,DSA *key);

int EVP_PKEY _assign_DH(EVP_PKEY *pkey,DH *key);

int EVP_PKEY_assign_EC_KEY(EVP_PKEY *pkey,EC_KEY *key);

int EVP_PKEY _type(int type);
DESCRIPTION

EVP_PKEY_setl RSA() EVP_PKEY_setl DSA() EVP_PKEY_setl DH() and
EVP_PKEY_setl EC KEY4gt the key referenced pkey to key.

EVP_PKEY_getl RSA() EVP_PKEY_getl DSA() EVP_PKEY_getl DH() and
EVP_PKEY_getl EC_KEYi@turn the referenced key jakey or NULL if the key is not of the correct
type.

EVP_PKEY_assign_RSA() EVP_PKEY_assign_DSA() EVP_PKEY_assign DH() and
EVP_PKEY_assign_EC_KEYd)so set the referenced keykey however these use the suppliezly
internally and s&ey will be freed when the parepkey is freed.

EVP_PKEY _type()eturns the type of key corresponding to the vayype. The type of a key can be
obtained with EVP_PKEY_type(pkey—>type). The return value will B®P_PKEY_RSA
EVP_PKEY_DSA EVP_PKEY_DHor EVP_PKEY_ECfor the corresponding key types or NID_undef if
the key type is unassigned.

NOTES
In accordance with the OpenSSL naming convention the key obtained from or assignegkiythe
using thel functions must be freed as well@sey.
EVP_PKEY_assign_RSA() EVP_PKEY_assign_DSA() EVP_PKEY_assign_DH()
EVP_PKEY_assign_EC_KE¥q)e implemented as macros.

RETURN VALUES

EVP_PKEY_setl RSA() EVP_PKEY_setl DSA() EVP_PKEY_setl DH() and
EVP_PKEY_setl EC KEY@turn 1 for success or 0 for failure.

EVP_PKEY_getl RSA() EVP_PKEY_getl DSA() EVP_PKEY_getl DH() and
EVP_PKEY_ getl EC_KEM@turn the referenced key RULL if an error occurred.

EVP_PKEY_assign_RSA() EVP_PKEY_assign_DSA() EVP_PKEY_assign DH() and
EVP_PKEY_assign_EC_KEYgturn 1 for success and O for failure.

SEE ALSO
EVP_PKEY_ne(B)

HISTORY
TBA

0.9.7c 2002-10-09 241

EVP_Seallnit(3) OpenSSL EVP_Seallnit(3)

NAME
EVP_Seallnit, EVP_SealUpdate, EVP_SealFinal — EVP envelope encryption

SYNOPSIS
#include <openssl/evp.h>

int EVP_Seallnit(EVP_CIPHER_CTX *ctx, EVP_CIPHER *type, unsigned char **ek,
int *ekl, unsigned char *iv,EVP_PKEY **pubk, int npubk);
int EVP_SealUpdate(EVP_CIPHER_CTX *ctx, unsigned char *out,
int *outl, unsigned char *in, int inl);
int EVP_SealFinal(EVP_CIPHER_CTX *ctx, unsigned char *out,
int *outl);

DESCRIPTION
The EVP envelope routines are a high level interface to envelope encryption. They generate a random
key andiv (if required) then “envelope” it by using public key encryption. Data can then be encrypted
using this key.

EVP_Seallnit()initializes a cipher contexttx for encryption with ciphetype using a random secret

key andIVv. type is normally supplied by a function such BYP_des cbc()The secret key is
encrypted using one or more public keys, this allows the same encrypted data to be decrypted using any
of the corresponding private keysk is an array of buffers where the public key encrypted secret key

will be written, each buffer must contain enough room for the corresponding encrypted key: that is
ek[i] must have room foEVP_PKEY _size(pubk[i]) bytes. The actual size of each encrypted secret

key is written to the arragkl. pubk is an array ohpubk public keys.

Theiv parameter is a buffer where the generate written to. It must contain enough room for the
corresponding cipher®/, as determined by (for example) EVP_CIPHER_iv_length(type).

If the cipher does not require anthen thav parameter is ignored and canNieLL .

EVP_SealUpdate(and EVP_SealFinal()have exactly the same properties as Ev8_EncryptUp-
date()andEVP_EncryptFinal(routines, as documented on 8€P_Encryptini{3) manual page.

RETURN VALUES
EVP_Seallnit(returns 0 on error arpubk if successful.

EVP_SealUpdate@ndEVP_SealFinal(yeturn 1 for success and 0 for failure.

NOTES
Because a random secret key is generated the random number generator must be seeded before calling
EVP_Seallnit()

The public key must bRSA because it is the only OpenSSL public key algorithm that supports key
transport.

Envelope encryption is the usual method of using public key encryption on large amounts of data, this
is because public key encryption is slow but symmetric encryption is fast. So symmetric encryption is
used for bulk encryption and the small random symmetric key used is transferred using public key
encryption.

It is possible to calEVP_Seallnit(twice in the same way &VP_Encryptinit() The first call should
havenpubk set to 0 and (after setting any cipher parameters) it should be called agaiypeiset to
NULL.

SEE ALSO
evp(3), rand(3), EVP_Encryptini(3), EVP_OpenIni{3)

HISTORY
EVP_SealFinal(¥id not return a value before OpenSSL 0.9.7.

242 2003-01-26 0.9.7c

EVP_Signinit(3) OpenSSL EVP_Signinit(3)

NAME

EVP_Signinit, EVP_SignUpdate, EVP_SignFinal — EVP signing functions

SYNOPSIS

#include <openssl/evp.h>

int EVP_Signinit_ex(EVP_MD_CTX *ctx, const EVP_MD *type, ENGINE *impl);
int EVP_SignUpdate(EVP_MD_CTX *ctx, const void *d, unsigned int cnt);
int EVP_SignFinal(EVP_MD_CTX *ctx,unsigned char *sig,unsigned int *s, EVP_PKEY *pkey);

void EVP_Signinit(EVP_MD_CTX *ctx, const EVP_MD *type);
int EVP_PKEY_size(EVP_PKEY *pkey);

DESCRIPTION

TheEVP signature routines are a high level interface to digital signatures.

EVP_Signinit_ex(kets up signing contextx to use digestype from ENGINE impl. ctx must be ini-
tialized withEVP_MD_CTX_init(pefore calling this function.

EVP_SignUpdate(hashesxnt bytes of data adl into the signature contextx. This function can be
called several times on the santeto include additional data.

EVP_SignFinal(signs the data intx using the private kepkey and places the signaturesiy. If the
s parameter is nAYULL then the number of bytes of data written (i.e. the length of the signature) will
be written to the integer af at most EVP_PKEY _size(pkey) bytes will be written.

EVP_Signinit()initializes a signing contexitx to use the default implementation of digegte.

EVP_PKEY_size(eturns the maximum size of a signature in bytes. The actual signature returned by
EVP_SignFinal(may be smaller.

RETURN VALUES

EVP_Signinit_ex()EVP_SignUpdate@ndEVP_SignFinal(yeturn 1 for success and 0 for failure.
EVP_PKEY_sizefeturns the maximum size of a signature in bytes.
The error codes can be obtained®R_get_errof3).

NOTES

BUGS

The EVP interface to digital signatures should almost always be used in preference to the low level
interfaces. This is because the code then becomes transparent to the algorithm used and much more
flexible.

Due to the link between message digests and public key algorithms the correct digest algorithm must be
used with the correct public key type. A list of algorithms and associated public key algorithms appears
in EVP_DigestIni(3).

When signing withDSA private keys the random number generator must be seeded or the operation
will fail. The random number generator does not need to be seede@Asignatures.

The call toEVP_SignFinal()internally finalizes a copy of the digest context. This means that calls to
EVP_SignUpdate@ndEVP_SignFinal(an be called later to digest and sign additional data.

Since only a copy of the digest context is ever finalized the context must be cleaned up after use by
callingEVP_MD_CTX_cleanup@r a memory leak will occur.

Older versions of this documentation wrongly stated that call/#® SignUpdate@ould not be made
after callingeVP_SignFinal()

SEE ALSO

EVP_Verifynit(3), EVP_Digestlini(3), err(3), evp(3), hmad3), md2(3), md5(3), mdc2(3),
ripemd(3), sha(3), dgst(1)

HISTORY

0.9.7c

EVP_Signinit() EVP_SignUpdate(®@nd EVP_SignFinal(Jare available in all versions of SSLeay and
OpenSSL.

EVP_Signinit_ex(vas added in OpenSSL 0.9.7.

2002-07-18 243

EVP_ Verifylnit(3) OpenSSL EVP_ Verifylnit(3)

NAME
EVP_\Verifylnit, EVP_VerifyUpdate, EVP_\VerifyFinal — EVP signature verification functions

SYNOPSIS
#include <openssl/evp.h>

int EVP_Verifylnit_ex(EVP_MD_CTX *ctx, const EVP_MD *type, ENGINE *impl);
int EVP_VerifyUpdate(EVP_MD_CTX *ctx, const void *d, unsigned int cnt);
int EVP_VerifyFinal(EVP_MD_CTX *ctx,unsigned char *sigbuf, unsigned int siglen,EVP_PKEY *pkey);
int EVP_Verifylnit(EVP_MD_CTX *ctx, const EVP_MD *type);
DESCRIPTION
TheEVP signature verification routines are a high level interface to digital signatures.

EVP_Verifylnit_ex(pets up verification contertx to use digestype from ENGINE impl. ctx must be
initialized by callingeVP_MD_CTX init(before calling this function.

EVP_\VerifyUpdate(hashesnt bytes of data ad into the verification contexdtx. This function can be
called several times on the santeto include additional data.

EVP_VerifyFinal()verifies the data iotx using the public kepkey and against thsiglenbytes atsig-
buf.

EVP_Verifylnit()initializes verification contexttx to use the default implementation of digggte.

RETURN VALUES
EVP_Verifylnit_ex(andEVP_VerifyUpdate(jeturn 1 for success and 0 for failure.

EVP_\VerifyFinal(returns 1 for a correct signature, 0 for failure and -1 if some other error occurred.

The error codes can be obtained2BR_get_errof3).

NOTES
The EVP interface to digital signatures should almost always be used in preference to the low level
interfaces. This is because the code then becomes transparent to the algorithm used and much more
flexible.

Due to the link between message digests and public key algorithms the correct digest algorithm must be
used with the correct public key type. A list of algorithms and associated public key algorithms appears
in EVP_Digestlni(3).

The call toEVP_VerifyFinal()internally finalizes a copy of the digest context. This means that calls to
EVP_VerifyUpdate(andEVP_ VerifyFinal()can be called later to digest and verify additional data.

Since only a copy of the digest context is ever finalized the context must be cleaned up after use by
callingEVP_MD_CTX_cleanup@r a memory leak will occur.

BUGS
Older versions of this documentation wrongly stated that calEvi®_VerifyUpdate(ould not be
made after callingeVP_ VerifyFinal()

SEE ALSO
evp(3), EVP_Signini(3), EVP_Digestlni(3), err(3), evp(3), hmac(3), md2(3), md5(3), mdc2(3),
ripemd(3), sha(3), dgst(1)

HISTORY
EVP_\Verifylnit() EVP_VerifyUpdate(and EVP_\VerifyFinal()are available in all versions of SSLeay
and OpenSSL.

EVP_Verifylnit_ex(Wwas added in OpenSSL 0.9.7

244 2002-07-10 0.9.7c

Ih_stats(3) OpenSSL Ih_stats(3)

NAME
Ih_stats, Ih_node_stats, lh_node_usage_stats, Ih_stats_bio, lh_node_stats_bio, Ih_node_usage_stats_bio
- LHASH statistics

SYNOPSIS
#include <openssl/Ihash.h>

void Ih_stats(LHASH *table, FILE *out);
void Ih_node_stats(LHASH *table, FILE *out);
void Ih_node_usage_stats(LHASH *table, FILE *out);

void Ih_stats_bio(LHASH *table, BIO *out);
void Ih_node_stats_bio(LHASH *table, BIO *out);
void Ih_node_usage_stats bio(LHASH *table, BIO *out);

DESCRIPTION
TheLHASH structure records statistics about most aspects of accessing the hash table. This is mostly a
legacy of Eric Young writing this library for the reasons of implementing what looked like a nice algo-
rithm rather than for a particular software product.

Ih_stats()prints out statistics on the size of the hash table, how many entries are in it, and the number
and result of calls to the routines in this library.

Ih_node_stats(prints the number of entries for each 'bucket’ in the hash table.

Ih_node_usge_stats(prints out a short summary of the state of the hash table. It prints the 'load’ and
the ’'actual load’. The load is the average number of data items per 'bucket’ in the hash table. The
'actual load’ is the average number of items per 'bucket’, but only for buckets which contain entries.
So the 'actual load’ is the average number of searches that will need to find an item in the hash table,
while the 'load’ is the average number that will be done to record a miss.

Ih_stats_bio() In_node_stats_bio@@ndIh_node_usage_stats_bicgje the same as the above, except
that the output goes toEO.

RETURN VALUES
These functions do not return values.

SEE ALSO
bio(3), Ihash(3)

HISTORY
These functions are available in all versions of SSLeay and OpenSSL.

This manpage is derived from the SSLeay documentation.

0.9.7c 2000-01-30 245

Ihash(3) OpenSSL Ihash(3)

NAME
Ih_new, |h_free, Ih_insert, In_delete, Ih_retrieve, Ih_doall, Ih_doall_arg, Ih_error — dynamic hash table

SYNOPSIS
#include <openssl/Ihash.h>

LHASH *lh_new(LHASH_HASH_FN_TYPE hash, LHASH_COMP_FN_TYPE compare);
void Ih_free(LHASH *table);

void *lh_insert(LHASH *table, void *data);
void *lh_delete(LHASH *table, void *data);
void *lh_retrieve(LHASH *table, void *data);

void Ih_doall(LHASH *table, LHASH_DOALL_FN_TYPE func);
void Ih_doall_arg(LHASH *table, LHASH_DOALL_ARG_FN_TYPE func,
void *arg);

int In_error(LHASH *table);

typedef int (*LHASH_COMP_FN_TYPE)(const void *, const void *);

typedef unsigned long (*LHASH_HASH_FN_TYPE)(const void *);

typedef void (*LHASH_DOALL_FN_TYPE)(const void *);

typedef void (*LHASH_DOALL_ARG_FN_TYPE)(const void *, const void *);

DESCRIPTION
This library implements dynamic hash tables. The hash table entries can be arbitrary structures. Usually
they consist of key and value fields.

Ih_new()creates a newHASH structure to store arbitrary data entries, and provides the 'hash’ and
‘compare’ callbacks to be used in organising the table’s entrieshadtecallback takes a pointer to a

table entry as its argument and returns an unsigned long hash value for its key field. The hash value is
normally truncated to a power of 2, so make sure that your hash function returns well mixed low order
bits. Thecompare callback takes two arguments (pointers to two hash table entries), and returns O if
their keys are equal, non-zero otherwise. If your hash table will contain items of some particular type
and the hash and compare callbacks hash/compare these types, then the
DECLARE_LHASH _HASH_FN and IMPLEMENT_LHASH_COMP_FN macros can be used to create
callback wrappers of the prototypes requiredrbynew() These provide per-variable casts before call-

ing the type-specific callbacks written by the application author. These macros, as well as those used
for the “doall” callbacks, are defined as;

#define DECLARE_LHASH_ HASH_FN(f_name,o_type) \
unsigned long f_name## LHASH_ HASH(const void *);
#define IMPLEMENT_LHASH_HASH_FN(f_name,o_type) \
unsigned long f_name## LHASH_HASH(const void *arg) {\
o_type a = (o_type)arg; \
return f_name(a); }
#define LHASH_HASH_FN(f_name) f_name## LHASH HASH

#define DECLARE_LHASH_ COMP_FN(f_name,o_type) \
intf_name## LHASH_COMP(const void *, const void *);
#define IMPLEMENT_LHASH_COMP_FN(f_name,o_type) \
intf_name## LHASH_COMP(const void *argl, const void *arg2) {\
o_type a = (o_type)argl;\
o_type b = (o_type)arg2; \
return f_name(a,b); }
#define LHASH_COMP_FN(f_name) f_name## LHASH _COMP

246 2002-07-18 0.9.7c

Ihash(3) OpenSSL Ihash(3)

0.9.7c

#define DECLARE_LHASH_DOALL_FN(f_name,o_type) \
void f_name## LHASH_DOALL(const void *);
#define IMPLEMENT_LHASH_DOALL_FN(f_name,o_type) \
void f_name## LHASH_DOALL(const void *arg) {\
o_type a = (o_type)arg; \
f name(a); }
#define LHASH_DOALL_FN(f_name) f name## LHASH DOALL

#define DECLARE_LHASH _DOALL_ARG_FN(f_name,o_type,a_type) \
void f_name## LHASH_DOALL_ARG(const void *, const void *);
#define IMPLEMENT_LHASH_DOALL_ARG_FN(f_name,o_type,a_type) \
void f_name## LHASH_ DOALL_ARG(const void *argl, const void *arg2) {\
o_type a = (o_type)argl;\
a_type b = (a_type)arg2; \
f name(a,b); }
#define LHASH_DOALL_ARG_FN(f_name) f name## LHASH DOALL_ARG

An example of a hash table storing (pointers to) structures of $fiju=F could be defined as follows;

/* Calculates the hash value of 'tohash’ (implemented elsewhere) */

unsigned long STUFF_hash(const STUFF *tohash);

/* Orders 'argl’ and 'arg2’ (implemented elsewhere) */

int STUFF_cmp(const STUFF *argl, const STUFF *arg2);

/* Create the type-safe wrapper functions for use in the LHASH internals */

static IMPLEMENT_LHASH_HASH_FN(STUFF_hash, const STUFF *)

static IMPLEMENT_LHASH_COMP_FN(STUFF_cmp, const STUFF *);

[* ..

int main(int argc, char *argv[]) {
/* Create the new hash table using the hash/compare wrappers */
LHASH *hashtable = lh_new(LHASH_HASH_FN(STUFF_hash),

LHASH_COMP_FN(STUFF_cmp));

[* ..

}

Ih_free()frees theLHASH structuretable. Allocated hash table entries will not be freed; consider using
Ih_doall() to deallocate any remaining entries in the hash table (see below).

Ih_insert()inserts the structure pointed to tigta into table. If there already is an entry with the same
key, the old value is replaced. Note thmatinsert()stores pointers, the data are not copied.

Ih_delete()deletes an entry frotable.

Ih_retrieve()looks up an entry itable. Normally,data is a structure with the key field(s) set; the func-
tion will return a pointer to a fully populated structure.

Ih_doall() will, for every entry in the hash table, célinc with the data item as its parameter. For
Ih_doall() andlh_doall_arg() function pointer casting should be avoided in the callbacksNG&E) —

instead, either declare the callbacks to match the prototype requiréid new() or use the
declare/implement macros to create type-safe wrappers that cast variables prior to calling your type-
specific callbacks. An example of this is illustrated here where the callback is used to cleanup
resources for items in the hash table prior to the hashtable itself being deallocated:

/* Cleans up resources belonging to 'a’ (this is implemented elsewhere) */
void STUFF_cleanup(STUFF *a);
/* Implement a prototype-compatible wrapper for "STUFF_cleanup” */
IMPLEMENT_LHASH_DOALL_FN(STUFF_cleanup, STUFF *)

[* ... then later in the code ... */
/* So to run "STUFF_cleanup" against all items in a hash table ... */
Ih_doall(hashtable, LHASH_DOALL_ FN(STUFF_cleanup));
/* Then the hash table itself can be deallocated */
Ih_free(hashtable);

When doing this, be careful if you delete entries from the hash table in your callbacks: the table may
decrease in size, moving the item that you are currently on down lower in the hash table - this could
cause some entries to be skipped during the iteration. The second best solution to this problem is to set

2002-07-18 247

Ihash(3) OpenSSL Ihash(3)

hash—->dwn_load=0 before you start (which will stop the hash table ever decreasing in size). The best
solution is probably to avoid deleting items from the hash table inside a “doall” callback!

Ih_doall_arg()is the same akh_doall() except thafunc will be called witharg as the second argu-

ment andunc should be of typeHASH_DOALL_ARG_FN_TYPE (a callback prototype that is passed

both the table entry and an extra argument). As lhitboall(), you can instead choose to declare your
callback with a prototype matching the types you are dealing with and use the declare/implement
macros to create compatible wrappers that cast variables before calling your type-specific callbacks.
An example of this is demonstrated here (printing all hash table entri@@alzat is provided by the

caller):

/* Prints item 'a’ to "output_bio’ (this is implemented elsewhere) */

void STUFF_print(const STUFF *a, BIO *output_bio);

/* Implement a prototype-compatible wrapper for "STUFF_print" */

static IMPLEMENT_LHASH_DOALL_ARG_FN(STUFF_print, const STUFF *, BIO *)
[* ... then later in the code ... */

/* Print out the entire hashtable to a particular BIO */

Ih_doall_arg(hashtable, LHASH DOALL_ARG_FN(STUFF_print), logging_bio);

Ih_error() can be used to determine if an error occurred in the last opethtierror() is a macro.

RETURN VALUES
Ih_new()returnsNULL on error, otherwise a pointer to the neMASH structure.

When a hash table entry is replackd,nsert()returns the value being replacetULL is returned on
normal operation and on error.

Ih_delete(returns the entry being deletedULL is returned if there is no such value in the hash table.
Ih_retrieve()returns the hash table entry if it has been fostud,L otherwise.

Ih_error() returns 1 if an error occurred in the last operation, 0 otherwise.

Ih_free() In_doall()andlh_doall_arg()return no values.

NOTE
The various. HASH macros and callback types exist to make it possible to write type-safe code without
resorting to function-prototype casting — an evil that makes application code much harder to audit/ver-
ify and also opens the window of opportunity for stack corruption and other hard-to-find bugs. It also,
apparently, violatesNSI-C.

The LHASH code regards table entries as constant data. As such, it internally repitesiestst()d

items with a “const void *” pointer type. This is why callbacks such as those usé#d dgall() and
Ih_doall_arg()declare their prototypes with “const”, even for the parameters that pass back the table
items’ data pointers — for consistency, user-provided data is “const” at all times as farLatBte

code is concerned. However, as callers are themselves providing these pointers, they can choose
whether they too should be treating all such parameters as constant.

As an example, a hash table may be maintained by code that, for reasons of encapsulation, has only
“const” access to the data being indexed in the hash table (ie. it is returned as “const” from elsewhere
in their code) — in this case th&lASH prototypes are appropriate as—is. Conversely, if the caller is
responsible for the life-time of the data in question, then they may well wish to make modifications to
table item passed back in the doall() or Ih_doall_arg()callbacks (see the “STUFF_cleanup” exam-

ple above). If so, the caller can either cast the “const” away (if they're providing the raw callbacks
themselves) or use the macros to declare/implement the wrapper functions without “const” types.

Callers that only have “const” access to data they're indexing in a table, yet declare callbacks without
constant types (or cast the “const” away themselves), are therefore creating their own risks/bugs with-
out being encouraged to do so by g&®. On a related note, those auditing code should pay special
attention to any instances of DECLARE/IMPLEMENT_LHASH DOALBRG_] FN macros that
provide types without any “const” qualifiers.

BUGS
Ih_insert()returnsNULL both for success and error.

INTERNALS
The following description is based on the SSLeay documentation:

248 2002-07-18 0.9.7c

Ihash(3) OpenSSL Ihash(3)

Thelhashlibrary implements a hash table described inGbexmunications of theCMin 1991. What

makes this hash table different is that as the table fills, the hash table is increased (or decreased) in size
via OPENSSL realloc(). When a resize’ is done, instead of all hashes being redistributed over twice
as many 'buckets’, one bucket is split. So when an 'expand’ is done, there is only a minimal cost to
redistribute some values. Subsequent inserts will cause more single 'bucket’ redistributions but there
will never be a sudden large cost due to redistributing all the "buckets’.

The state for a particular hash table is kept intHASH structure. The decision to increase or
decrease the hash table size is made depending on the ’load’ of the hash table. The load is the number
of items in the hash table divided by the size of the hash table. The default values are as follows. If
(hash—>up_load < load) => expand. if (hash—>down_load > load) => contractuplh@ad has a

default value of 1 andown_load has a default value of 2. These numbers can be modified by the
application by just playing with thep_load anddown_load variables. The ’'load’ is kept in a form

which is multiplied by 256. So hash—>up_load=8*256; will cause a load of 8 to be set.

If you are interested in performance the field to watch is num_comp_calls. The hash library keeps
track of the 'hash’ value for each item so when a lookup is done, the 'hashes’ are compared, if there is
a match, then a full compare is done, and hash—>num_comp_calls is incremented. If num_comp_calls
is not equal to num_delete plus num_retrieve it means that your hash function is generating hashes that
are the same for different values. It is probably worth changing your hash function if this is the case
because even if your hash table has 10 items in a 'bucket’, it can be searched uvitfigh@d long
compares and 10 linked list traverses. This will be much less expensive that 10 calls to your compare
function.

Ih_strhash()is a demo string hashing function:
unsigned long Ih_strhash(const char *c);

Since theLHASH routines would normally be passed structures, this routine would not normally be
passed téh_new(), rather it would be used in the function passéd twew().

SEE ALSO

Ih_statq3)

HISTORY

0.9.7c

Thelhashlibrary is available in all versions of SSLeay and OpenS8Lerror() was added in SSLeay
0.9.1b.

This manpage is derived from the SSLeay documentation.

In OpenSSL 0.9.7, all Ihash functions that were passed function pointers were changed for better type
safetyy, and the function types LHASH_COMP_FN_TYPE LHASH_HASH_FN_TYPE
LHASH_DOALL_FN_TYPEandLHASH_DOALL_ARG_FN_TYPEbecame available.

2002-07-18 249

OBJ_nid20bj(3) OpenSSL OBJ_nid20bj(3)

NAME
OBJ_nid2obj, OBJ_nid2In, OBJ nid2sn, OBJ obj2nid, OBJ txt2nid, OBJ In2nid, OBJ_sn2nid,
OBJ_cmp, OBJ_dup, OBJ_txt2obj, OBJ_obj2txt, OBJ create, OBJ_cleanup — ASNL1 object utility
functions

SYNOPSIS
ASN1 OBJECT * OBJ_nid2obj(int n);
const char* OBJ_nid2In(int n);
const char* OBJ_nid2sn(int n);

int OBJ_obj2nid(const ASN1_OBJECT *0);
int OBJ_In2nid(const char *In);
int OBJ_sn2nid(const char *sn);

int OBJ_txt2nid(const char *s);

ASN1 OBJECT * OBJ_txt2obj(const char *s, int no_name);
int OBJ_obj2txt(char *buf, int buf_len, const ASN1_OBJECT *a, int no_name);

int OBJ_cmp(const ASN1_OBJECT *a,const ASN1_OBJECT *b);
ASN1 OBJECT * OBJ_dup(const ASN1_OBJECT *0);

int OBJ_create(const char *oid,const char *sn,const char *In);
void OBJ_cleanup(void);

DESCRIPTION
The ASN1 object utility functions proces&SN1_OBJECTstructures which are a representation of the
ASN1 OBJECT IDENTIFIEROID) type.

OBJ_nid20obj() OBJ_nid2In()and OBJ_nid2sn()convert theNID n to anASN1_OBJECTstructure, its
long name and its short name respectivelyydkL is an error occurred.

OBJ_obj2nid() OBJ_In2nid() OBJ_sn2nid(xeturn the correspondingID for the objecto, the long
name <In> or the short name <sn> respectively or NID_undef if an error occurred.

OBJ_txt2nid()returnsNID corresponding to text string <sscan be a long name, a short name or the
numerical respresentation of an object.

OBJ_txt2obj()converts the text stringinto anASN1_OBJECTstructure. Ifno_nameis 0 then long
names and short names will be interpreted as well as numerical fomasndmeis 1 only the numer-
ical form is acceptable.

OBJ_obj2txt()converts theASN1_OBJECT a into a textual representation. The representation is writ-
ten as a null terminated string baf at mostbuf_len bytes are written, truncating the result if neces-
sary. The total amount of space required is returneub [hameis 0 then if the object has a long or
short name then that will be used, otherwise the numerical form will be used.ndmeis 1 then the
numerical form will always be used.

OBJ_cmp(xompares to b. If the two are identical O is returned.
OBJ_dup(returns a copy ob.

OBJ_create(Jadds a new object to the internal talde is the numerical form of the objedn the
short name anbh the long name. A newID is returned for the created object.

OBJ_cleanup(kleans up OpenSSLs internal object table: this should be called before an application
exits if any new objects were added usibigJ_create().

NOTES
Objects in OpenSSL can have a short name, a long nhame and a numerical idemifiesgociated
with them. A standard set of objects is represented in an internal table. The appropriate values are
defined in the header fitihjects.h.

For example th®@ID for commonName has the following definitions:

#define SN_commonName "CN"
#define LN_commonName "commonName"
#define NID_commonName 13

250 2002-10-20 0.9.7c

OBJ_nid20bj(3) OpenSSL OBJ_nid20bj(3)

New objects can be added by calli®J_create()

Table objects have certain advantages over other objects: for example their NIDs can be used in a C
language switch statement. They are also static constant structures which are shared: that is there is
only a single constant structure for each table object.

Objects which are not in the table havethie value NID_undef.

Objects do not need to be in the internal tables to be processed, the fu@@idnxt2obj()and
OBJ_obj2txt()}can process the numerical form of@i.

EXAMPLES
Create an object faommonName:

ASN1_OBJECT *o;
0 = OBJ_nid20obj(NID_commonName);

Check if an object isommonName

if (OBJ_obj2nid(obj) == NID_commonName)
/* Do something */

Create a newWID and initialize an object from it:

int new_nid;
ASN1_OBJECT *obj;
new_nid = OBJ_create("1.2.3.4", "NewOID", "New Obiject Identifier");

obj = OBJ_nid2obj(new_nid);
Create a new object directly:
obj = OBJ_txt20bj("1.2.3.4", 1);

BUGS
OBJ_obj2txt()is awkward and messy to use: it doesn't follow the convention of other OpenSSL func-
tions where the buffer can be setNOLL to determine the amount of data that should be written.
Insteadbuf must point to a valid buffer artsif _len should be set to a positive value. A buffer length of
80 should be more than enough to handleG@ibyencountered in practice.

RETURN VALUES
OBJ_nid2obj(returns amASN1_OBJECT structure oNULL is an error occurred.

OBJ_nid2In()andOBJ_nid2sn(yeturns a valid string oMULL on error.
OBJ_obj2nid() OBJ_In2nid() OBJ_sn2nid(andOBJ_txt2nid(yeturn aNID or NID_undef on error.

SEE ALSO
ERR_get_erro(3)

HISTORY
TBA

0.9.7c 2002-10-20 251

OpenSSL_add_all_algorithms(3) OpenSSL OpenSSL_add_all_algorithms(3)

NAME

OpenSSL_add_all_algorithms, OpenSSL_add_all_ciphers, OpenSSL_add_all_digests — add algorithms
to internal table

SYNOPSIS

#include <openssl/evp.h>

void OpenSSL_add_all_algorithms(void);
void OpenSSL_add_all_ciphers(void);
void OpenSSL_add_all_digests(void);

void EVP_cleanup(void);

DESCRIPTION

OpenSSL keeps an internal table of digest algorithms and ciphers. It uses this table to lookup ciphers
via functions such asVP_get_cipher_byname().

OpenSSL_add_all_digests@ds all digest algorithms to the table.
OpenSSL_add_all_algorithmsgjids all algorithms to the table (digests and ciphers).

OpenSSL_add_all_ciphers@dds all encryption algorithms to the table including password based
encryption algorithms.

EVP_cleanup(Jemoves all ciphers and digests from the table.

RETURN VALUES

None of the functions return a value.

NOTES

BUGS

A typical application will will callOpenSSL_add_all_algorithms@itially and EVP_cleanup(before
exiting.

An application does not need to add algorithms to use them explicitly, for exampMFshal(). It
just needs to add them if it (or any of the functions it calls) needs to lookup algorithms.

The cipher and digest lookup functions are used in many parts of the library. If the table is not initial-
ized several functions will misbehave and complain they cannot find algorithms. This includes the
PEM, PKCS#12SSLand S/MIME libraries. This is a common query in the OpenSSL mailing lists.

Calling OpenSSL_add_all_algorithmdifks in all algorithms: as a result a statically linked executable
can be quite large. If this is important it is possible to just add the required ciphers and digests.

Although the functions do not return error codes it is possible for them to fail. This will only happen as
a result of a memory allocation failure so this is not too much of a problem in practice.

SEE ALSO

252

evp(3), EVP_DigestIni(3), EVP_EncryptIni(3)

2000-09-20 0.9.7c

OPENSSL_VERSION_NUMBER(3) OpenSSL OPENSSL_VERSION_NUMBER(3)

NAME
OPENSSL_VERSION_NUMBER, SSLeay, SSLeay_version — get OpenSSL version humber

SYNOPSIS
#include <openssl/opensslv.h>
#define OPENSSL_VERSION_NUMBER OxnnnnnnnnnL

#include <openssl/crypto.h>
long SSLeay(void);
const char *SSLeay_version(int t);

DESCRIPTION
OPENSSL_VERSION_NUMBERs a numeric release version identifier:

MMNNFFPPS: major minor fix patch status
The status nibble has one of the values 0 for development, 1 to e for betas 1 to 14, and f for release.
for example

0x000906000 == 0.9.6 dev
0x000906023 == 0.9.6b beta 3
0x00090605f == 0.9.6¢€ release

Versions prior to 0.9.3 have identifiers < 0x0930. Versions between 0.9.3 and 0.9.5 had a version iden-
tifier with this interpretation:

MMNNFFRBB major minor fix final beta/patch
for example

0x000904100 == 0.9.4 release
0x000905000 == 0.9.5 dev

Version 0.9.5a had an interim interpretation that is like the current one, except the patch level got the
highest bit set, to keep continuity. The number was therefore 0x0090581f.

For backward compatibilitygSLEAY_VERSION_NUMBERSs also defined.

SSLeay(Jeturns this number. The return value can be compared to the macro to make sure that the cor-
rect version of the library has been loaded, especially when using DLLs on Windows systems.

SSlLeay_version(eturns different strings depending ton

SSLEAY_VERSION

The text variant of the version number and the release date. For example, “OpenSSL 0.9.5a 1 Apr
2000".

SSLEAY_CFLAGS
The compiler flags set for the compilation process in the form “compiler: ...” if available or
“compiler: information not available” otherwise.

SSLEAY_BUILT_ON

The date of the build process in the form “built on: ...” if available or “built on: date not avail-
able” otherwise.

SSLEAY_PLATFORM

The “Configure” target of the library build in the form “platform: ..."” if available or “platform:
information not available” otherwise.

SSLEAY_DIR
The “OPENSSLDIR setting of the library build in the form OPENSSLDIR:”..."* if available or

" OPENSSLDIR:N/A" otherwise.

For an unknown, the text “not available” is returned.

RETURN VALUE
The version number.

0.9.7c 2002-01-04 253

OPENSSL_VERSION_NUMBER(3) OpenSSL OPENSSL_VERSION_NUMBER(3)

SEE ALSO
crypto(3)

HISTORY
SSlLeay()and SSLEAY_VERSION_NUMBERare available in all versions of SSLeay and OpenSSL.
OPENSSL_VERSION_NUMBERSs available in all versions of OpenSSESLEAY_DIR was added in
OpenSSL 0.9.7.

254 2002-01-04 0.9.7c

PKCS12_create(3) OpenSSL PKCS12_create(3)

NAME
PKCS12_create — create a PKCS#12 structure

SYNOPSIS
#include <openssl/pkcs12.h>

PKCS12 *PKCS12_create(char *pass, char *name, EVP_PKEY *pkey, X509 *cert, STACK _OF(X509) *ca,
int nid_key, int nid_cert, int iter, int mac_iter, int keytype);

DESCRIPTION
PKCS12_create(@reates a PKCS#12 structure.

passis the passphrase to usmme s thefriendlyName to use for the supplied certifictate and key.
pkey is the private key to include in the structure amdt its corresponding certificatesa, if not
NULL is an optional set of certificates to also include in the structure.

nid_key and nid_cert are the encryption algorithms that should be used for the key and certificate
respectivelyiter is the encryption algorithm iteration count to use arat_iter is the MAC iteration
count to usekeytypeis the type of key.

NOTES
The parametersid_key, nid_cert, iter, mac_iter and keytype can all be set to zero and sensible
defaults will be used.

These defaults are: 40 I6C2 encryption for certificates, tripleES encryption for private keys, a key
iteration count oPKCS12_DEFAULT_ITERcurrently 2048) and ®IAC iteration count of 1.

The defaultMAC iteration count is 1 in order to retain compatibility with old software which did not
interpretMAC iteration counts. If such compatibility is not required tmeac_iter should be set to
PKCS12_DEFAULT_ITER

keytype adds a flag to the store private key. This is a non standard extension that is only currently inter-
preted byMSIE. If set to zero the flag is omitted, if setk&Y_SIG the key can be used for signing

only, if set toKEY_EX it can be used for signing and encryption. This option was useful for old export
grade software which could use signing only keys of arbitrary size but had restrictions on the permissi-
ble sizes of keys which could be used for encryption.

SEE ALSO
d2i_PKCS1%3)

HISTORY
PKCS12_create was added in OpenSSL 0.9.3

0.9.7c 2002-10-09 255

PKCS12_ parse(3) OpenSSL PKCS12_ parse(3)

NAME
PKCS12_parse — parse a PKCS#12 structure

SYNOPSIS
#include <openssl/pkcs12.h>

int PKCS12 parseKCS12 *pl2, const char *pass,EVP_PKEY **pkey, X509 **cert,
STACK_OHRX509) **ca);

DESCRIPTION
PKCS12_parse(parses #KCS12structure.

pl2is thePKCS12structure to pars@assis the passphrase to use. If successful the private key will be
written to*pkey, the corresponding certificate toert and any additional certificates *tca.

NOTES
The parameterpkey andcert cannot beNULL . ca can be ®ULL> in which case additional certifi-
cates will be discardedtca can also be a vali$TACK in which case additional certificates are
appended téca. If *ca is NULL a newSTACK will be allocated.

ThefriendlyName andlocalKeyID attributes (if present) on each certificate will be stored iralilas
andkeyid attributes of thex509 structure.

BUGS
Only a single private key and corresponding certificate is returned by this function. More complex
PKCS#12 files with multiple prate keys will only return the first match.

Only friendlyName andlocalKeyID attributes are currently stored in certificates. Other attributes are
discarded.

Attributes currently cannot be store in the private ke PKEY structure.

SEE ALSO
d2i_PKCS1%3)

HISTORY
PKCS12_parse was added in OpenSSL 0.9.3

256 2002-10-09 0.9.7c

PKCS7_decrypt(3) OpenSSL PKCS7_decrypt(3)

NAME
PKCS7_decrypt — decrypt content from a PKCS#7 envelopedData structure

SYNOPSIS
int PKCS7_decrypBKCS7*p7, EVP_PKEY*pkey, X509 *cert,BIO *data, int flags);

DESCRIPTION
PKCS7_decrypt(extracts and decrypts the content from a PKCS#7 envelopedData strpkéyrés
the private key of the recipientert is the recipients certificatélata is aBIO to write the content to
andflagsis an optional set of flags.

NOTES
OpenSSL_add_all_algorithms(®r equivalent) should be called before using this function or errors
about unknown algorithms will occur.

Although the recipients certificate is not needed to decrypt the data it is needed to locate the appropriate
(of possible several) recipients in the PKCS#7 structure.

The following flags can be passed in flaggsparameter.

If the PKCS7_TEXT flag is setMIME headers for typéext/plain are deleted from the content. If the
content is not of typgext/plain then an error is returned.

RETURN VALUES
PKCS7_decrypt(xeturns either 1 for success or 0 for failure. The error can be obtained from
ERR_@t_error(3)

BUGS
PKCS7_decrypt(inust be passed the correct recipient key and certificate. It would be better if it could
look up the correct key and certificate from a database.

The lack of single pass processing and need to hold all data in memory as mentlRKESh sign()
also applies tKCS7_verify()

SEE ALSO
ERR_get_erro(3), PKCS7_encrydi3)

HISTORY
PKCS7_decrypt(jvas added to OpenSSL 0.9.5

0.9.7c 2002-10-09 257

PKCS7_encrypt(3) OpenSSL PKCS7_encrypt(3)

NAME

PKCS7_encrypt — create a PKCS#7 envelopedData structure

SYNOPSIS

PKCS7*PKCS7_encrypt$TACK_ORX509) *certs,BIO *in, constEVP_CIPHER*cipher, int flags);

DESCRIPTION

PKCS7_encrypt(dreates and returns a PKCS#7 envelopedData structuiteis a list of recipient cer-
tificates.in is the content to be encryptedipher is the symmetric cipher to usiagsis an optional
set of flags.

NOTES

Only RSA keys are supported in PKCS#7 and envelopedData so the recipient certificates supplied to
this function must all contaiRSA public keys, though they do not have to be signed usin@R&re
algorithm.

EVP_des_ede3_chdfyiple DES) is the algorithm of choice for SIMIME use because most clients will
support it.

Some old “export grade” clients may only support weak encryption using 40 or 8€biThese can
be used by passirgVP_rc2_40 cbhc@ndEVP_rc2_64 cbc(jespectively.

The algorithm passed in tlegpher parameter must supp@&8N1 encoding of its parameters.

Many browsers implement a “sign and encrypt” option which is simply an S/IMIME envelopedData
containing an S/IMIME signed message. This can be readily produced by storing the S/IMIME signed
message in a memoBYO and passing it teKCS7_encrypt().

The following flags can be passed in flaggsparameter.
If the PKCS7_TEXT flag is seMIME headers for typtext/plain are prepended to the data.

Normally the supplied content is translated inMiME canonical format (as required by the SIMIME
specifications) ifPKCS7_BINARY is set no translation occurs. This option should be used if the sup-
plied data is in binary format otherwise the translation will corrupt PKES7_BINARY is set then
PKCS7_TEXT is ignored.

RETURN VALUES

BUGS

PKCS7_encrypt(jeturns either a vali#BKCS7structure oNULL if an error occurred. The error can be
obtained fromERR_get_erro(3).

The lack of single pass processing and need to hold all data in memory as mentlRKESh sign()
also applies tKCS7_verify()

SEE ALSO

ERR_get_erro(3), PKCS7_decryd3)

HISTORY

258

PKCS7_decrypt(jvas added to OpenSSL 0.9.5

2002-10-09 0.9.7c

PKCS7_sign(3) OpenSSL PKCS7_sign(3)

NAME

PKCS7_sign — create a PKCS#7 signedData structure

SYNOPSIS

PKCS7 *PKCS7_sign(X509 *signcertEVP_PKEY *pkey, STACK_ORX509) *certs, BIO *data, int
flags);

DESCRIPTION

PKCS7_sign(xreates and returns a PKCS#7 signedData structigrecert is the certificate to sign
with, pkey is the corresponsding private kegerts is an optional additional set of certificates to
include in the PKCS#7 structure (for example any intermediate CAs in the chain).

The data to be signed is read fraio data.
flagsis an optional set of flags.

NOTES

BUGS

Any of the following flags (ored together) can be passed ifidyeparameter.

Many S/MIME clients expect the signed content to include walidE headers. If theKCS7_TEXT
flag is seMIME headers for typtext/plain are prepended to the data.

If PKCS7_NOCERTS s set the signer’s certificate will not be included in EReCS7 structure, the
signer’s certificate must still be supplied in gigncert parameter though. This can reduce the size of

the signature if the signers certificate can be obtained by other means: for example a previously signed
message.

The data being signed is included in #CS7structure, unleseKCS7_DETACHED is set in which
case it is omitted. This is used fBKCS7 detached signatures which are used in SIMIME plaintext
signed messages for example.

Normally the supplied content is translated inMiME canonical format (as required by the SIMIME
specifications) ifPKCS7_BINARY is set no translation occurs. This option should be used if the sup-
plied data is in binary format otherwise the translation will corrupt it.

The signedData structure includes several PKCS#7 autenticatedAttributes including the signing time,
the PKCS#7 content type and the supported list of ciphers in an SMIMECapabilities attribute. If
PKCS7_NOATTR is set then no authenticatedAttributes will be use®KIES7_NOSMIMECAP is set

then just the SMIMECapabilities are omitted.

If present the SMIMECapabilities attribute indicates support for the following algorithms: Disge
128 bitRC2, 64 bitRC2 DESand 40 bitRC2 If any of these algorithms is disabled then it will not be
included.

PKCS7_sign()s somewhat limited. It does not support multiple signers, some advanced attributes such
as counter signatures are not supported.

The SHA1 digest algorithm is currently always used.

When the signed data is not detached it will be stored in memory withipKib®7 structure. This
effectively limits the size of messages which can be signed due to memory restraints. There should be a
way to sign data without having to hold it all in memory, this would however require fairly major revi-
sions of the OpenSSASN1 code.

Clear text signing does not store the content in memory but th®K@$7 _sign(pperates means that
two passes of the data must typically be made: one to compute the signatures and a second to output the
data along with the signature. There should be a way to process the data with only a single pass.

RETURN VALUES

PKCS7_sign(yeturns either a vali®KCS7structure oNULL if an error occurred. The error can be
obtained fromERR_get_erro(3).

SEE ALSO

0.9.7c

ERR_get_erro(3), PKCS7_verify3)

2002-10-09 259

PKCS7_sign(3) OpenSSL PKCS7_sign(3)

HISTORY
PKCS7_sign(was added to OpenSSL 0.9.5

260 2002-10-09 0.9.7c

PKCS7_verify(3) OpenSSL PKCS7_verify(3)

NAME

PKCS7_verify — verify a PKCS#7 signedData structure

SYNOPSIS

int PKCS7_verifyPKCS7*p7, STACK_OHRX509) *certs, X509 STORE *stor&|O *indata, BIO *out,
int flags);

int PKCS7_get0_signemKCS7*p7, STACK_OHRX509) *certs, int flags);

DESCRIPTION

PKCS7_verify(verifies a PKCS#7 signedData structyp@is thePKCS7structure to verifycertsis a
set of certificates in which to search for the signer’s certifichbee is a trusted certficate store (used
for chain verification).indata is the signed data if the content is not presenpin(that is it is
detached). The content is writtendut if it is not NULL.

flagsis an optional set of flags, which can be used to modify the verify operation.

PKCS7_get0_signers(etrieves the signer’s certificates frgn7, it doesnot check their validity or
whether any signatures are valid. Tberts and flags parameters have the same meanings as in
PKCS7_verify()

VERIFY PROCESS

Normally the verify process proceeds as follows.

Initially some sanity checks are performedpdh The type op7 must be signedData. There must be at
least one signature on the data and if the content is detiactad cannot beNULL .

An attempt is made to locate all the signer’s certificates, first looking icetteparameter (if it is not
NULL) and then looking in any certificates contained ingfiestructure itself. If any signer’s certifi-
cates cannot be located the operation fails.

Each signer’s certificate is chain verified usinggh@mesignpurpose and the supplied trusted certifi-
cate store. Any internal certificates in the message are used as untrusted CAs. If any chain verify fails
an error code is returned.

Finally the signed content is read (and writteoubis it is notNULL) and the signature’s checked.
If all signature’s verify correctly then the function is successful.

Any of the following flags (ored together) can be passed irflaélgs parameter to change the default
verify behaviour. Only the flagKCS7_NOINTERN is meaningful tt°PKCS7_get0_signers()

If PKCS7_NOINTERN is set the certificates in the message itself are not searched when locating the
signer’s certificate. This means that all the signers certificates must becertgyearameter.

If the PKCS7_TEXT flag is setMIME headers for typéext/plain are deleted from the content. If the
content is not of typgext/plain then an error is returned.

If PKCS7_NOVERIFY is set the signer’s certificates are not chain verified.

If PKCS7_NOCHAIN is set then the certificates contained in the message are not used as untrusted
CAs. This means that the whole verify chain (apart from the signer’s certificate) must be contained in
the trusted store.

If PKCS7_NOSIGSis set then the signatures on the data are not checked.

NOTES

0.9.7c

One application o0PKCS7_NOINTERN is to only accept messages signed by a small number of certifi-
cates. The acceptable certificates would be passed deitisgparameter. In this case if the signer is not
one of the certificates supplieddarts then the verify will fail because the signer cannot be found.

Care should be taken when modifying the default verify behaviour, for example setting
PKCS7_NOVERIFYPKCS7_NOSIGSwill totally disable all verification and any signed message
will be considered valid. This combination is however useful if one merely wishes to write the content
to out and its validity is not considered important.

Chain verification should arguably be performed using the signing time rather than the current time.
However since the signing time is supplied by the signer it cannot be trusted without additional evi-
dence (such as a trusted timestamp).

2002-10-09 261

PKCS7_verify(3) OpenSSL PKCS7_verify(3)

RETURN VALUES
PKCS7_verify(yeturns 1 for a successful verification and zero or a negative value if an error occurs.

PKCS7_get0_signersfgturns all signers MULL if an error occurred.
The error can be obtained frdBRR_get_erro(3)

BUGS
The trusted certificate store is not searched for the signers certificate, this is primarily due to the inade-
guacies of the curreixt509 _STOREfunctionality.

The lack of single pass processing and need to hold all data in memory as mentlRKESh sign()
also applies tKCS7_verify()

SEE ALSO
ERR_get_erro(3), PKCS7_sigri3)

HISTORY
PKCS7_verify(as added to OpenSSL 0.9.5

262 2002-10-09 0.9.7c

rand(3) OpenSSL rand(3)

NAME
rand — pseudo-random number generator

SYNOPSIS
#include <openssl/rand.h>

int RAND_set_rand_engine(ENGINE *engine);

int RAND_bytes(unsigned char *buf, int num);
int RAND_pseudo_bytes(unsigned char *buf, int num);

void RAND_seed(const void *buf, int num);
void RAND_add(const void *buf, int num, int entropy);
int RAND_status(void);

int RAND_load_file(const char *file, long max_bytes);
int RAND_write_file(const char *file);
const char *RAND _file_name(char *file, size_t num);

int RAND_egd(const char *path);

void RAND_set_rand_method(const RAND METHOD *meth);
const RAND_METHOD *RAND_get_rand_method(void);
RAND_METHOD *RAND_SSLeay(void);

void RAND _cleanup(void);

/* For Win32 only */
void RAND_screen(void);
int RAND_event(UINT, WPARAM, LPARAM);

DESCRIPTION
Since the introduction of thENGINE AP, the recommended way of controlling default implementa-
tions is by using theENGINE API functions. The defaultRAND METHOD, as set by
RAND_set _rand_method@nd returned b)RAND_get rand_method(s only used if NnENGINE has

been set as the default “rand” implementation. Hence, these two functions are no longer the

recommened way to control defaults.

If an alternativeRAND_METHOD implementation is being used (either set directly or as provided by
an ENGINE module), then it is entirely responsible for the generation and management of a crypto-

graphically secur@RNG stream. The mechanisms described below relate solely to the softRiaG
implementation built in to OpenSSL and used by default.

These functions implement a cryptographically secure pseudo-random number geRBi@pr If is

used by other library functions for example to generate random keys, and applications can use it when

they need randomness.

A cryptographicPRNG must be seeded with unpredictable data such as mouse movements or keys

pressed at random by the user. This is describ&RAND_add3). Its state can be saved in a seed file

(seeRAND _load_fil¢3)) to avoid having to go through the seeding process whenever the application is

started.
RAND_byte$3) describes how to obtain random data fromRR8IG

INTERNALS
TheRAND_SSLeayfhethod implements BRNGbased on a cryptographic hash function.

The following description of its design is based on the SSLeay documentation:

First up | will state the things | believe | need for a gaous.

1 A good hashing algorithm to mix things up and to converRte 'state’ to random numbers.
2 Aninitial source of random ’state’.

3 The state should be very large. If G is being used to generate 4096RHA keys, 2 2048 bit
random strings are required (at a minimum). If yBMG state only has 128 bits, you are obvi-

ously limiting the search space to 128 bits, not 2048. I'm probably getting a little carried away on

this last point but it does indicate that it may not be a bad idea to keep quite RN sfate. It

0.9.7c 2002-08-05 263

rand(3)

OpenSSL rand(3)

should be easier to break a cipher than guesRNl@eseed data.

4 Any RNG seed data should influence all subsequent random numbers genghaseidaplies that
any random seed data entered will have an influence on all subsequent random numbers generated.

5 When using data to seed tR8IG state, the data used should not be extractable frorRNi&
state. | believe this should be a requirement because one possible source of 'secret’ semi random
data would be a private key or a password. This data must not be disclosed by either subsequent
random numbers or a 'core’ dump left by a program crash.

6 Given the same initial 'state’, 2 systems should deviate in i state (and hence the random
numbers generatedyer time if at all possible.

7 Given the random number output stream, it should not be possible to determiieGlstate or
the next random number.

The algorithm is as follows.

There is global state made up of a 1023 byte buffer (the 'state’), a working hash value ('md’), and a
counter (‘'count’).

Whenever seed data is added, it is inserted into the 'state’ as follows.

The input is chopped up into units of 20 bytes (or less for the last block). Each of these blocks is run
through the hash function as follows: The data passed to the hash function is the current 'md’, the
same number of bytes from the ’state’ (the location determined by in incremented looping index) as the
current 'block’, the new key data 'block’, and 'count’ (which is incremented after each use). The result
of this is lept in 'md’ and also xored into the ’state’ at the same locations that were used as input into
the hash function. | believe this system addresses points 1 (hash function; c@raatly, 3 (the

'state’), 4 (via the 'md’), 5 (by the use of a hash function and xor).

When bytes are extracted from tREG, the following process is used. For each group of 10 bytes (or
less), we do the following:

Input into the hash function the local 'md’ (which is initialized from the global 'md’ before any bytes
are generated), the bytes that are to be overwritten by the random bytes, and bytes from the ’state’
(incrementing looping index). From this digest output (which is kept in 'md’), the top (up to) 10 bytes
are returned to the caller and the bottom 10 bytes are xored into the 'state’.

Finally, after we have finished 'num’ random bytes for the caller, 'count’ (which is incremented) and
the local and global 'md’ are fed into the hash function and the results are kept in the global 'md’.

| believe the above addressed points 1 (ussHaf-1), 6 (by hashing into the 'state’ the 'old’ data from
the caller that is about to be overwritten) and 7 (by not using the 10 bytes given to the caller to update
the 'state’, but they are used to update 'md’).

So of the points raised, only 2 is not addressed (blRABED _add3)).

SEE ALSO

264

BN_rand(3), RAND_add3), RAND _load_fil€3), RAND_egq3), RAND_byte$3),
RAND_set _rand_methdd), RAND_cleanug3)

2002-08-05 0.9.7c

RAND_add(3) OpenSSL RAND_add(3)

NAME
RAND_add, RAND_seed, RAND_status, RAND_event, RAND_screen — add entropy to the PRNG

SYNOPSIS
#include <openssl/rand.h>

void RAND_seed(const void *buf, int num);
void RAND_add(const void *buf, int num, double entropy);
int RAND_status(void);

int RAND_event(UINT iMsg, WPARAM wParam, LPARAM IParam);
void RAND_screen(void);

DESCRIPTION
RAND_add(mixes thenum bytes atuf into thePRNGstate. Thus, if the data latif are unpredictable
to an adversary, this increases the uncertainty about the state and maResIGhautput less pre-
dictable. Suitable input comes from user interaction (random key presses, mouse movements) and cer-
tain hardware events. Tleatropy argument is (the lower bound of) an estimate of how much random-
ness is contained iouf, measured in bytes. Details about sources of randomness and how to estimate
their entropy can be found in the literature, & gC 1750.

RAND_add(may be called with sensitive data such as user entered passwords. The seed values cannot
be recovered from thHeRNGoutput.

OpenSSL makes sure that tI!NG state is unique for each thread. On systems that provide
/dev/urandom, the randomness device is used to seed tR&NGtransparently. However, on all other
systems, the application is responsible for seedingrns by callingRAND_add()RAND_egd3) or
RAND_load_fil€3).

RAND_seed(s equivalent ttRAND_add(whennum == entropy.

RAND_event(xollects the entropy from Windows events such as mouse movements and other user
interaction. It should be called with tildsg, wParam and|Param arguments o&ll messages sent to

the window procedure. It will estimate the entropy contained in the event message (if any), and add it to
thePRNG The program can then process the messages as usual.

The RAND_screen(Junction is available for the convenience of Windows programmers. It adds the
current contents of the screen to #RNG For applications that can catch Windows events, seeding
the PRNG by calling RAND_event()s a significantly better source of randomness. It should be noted
that both methods cannot be used on servers that run without user interaction.

RETURN VALUES
RAND_status(andRAND_event(jeturn 1 if thePRNGhas been seeded with enough data, 0 otherwise.

The other functions do not return values.

SEE ALSO
rand(3), RAND_egd3), RAND load_fil¢3), RAND_cleanui3)

HISTORY
RAND_seed(@ndRAND_screen(are available in all versions of SSLeay and Open&3ND_add()
andRAND _status(have been added in OpenSSL 0.RBND_event()n OpenSSL 0.9.5a.

0.9.7c 2000-03-22 265

RAND_bytes(3) OpenSSL RAND_bytes(3)

NAME
RAND_bytes, RAND_pseudo_bytes — generate random data

SYNOPSIS
#include <openssl/rand.h>

int RAND _bytes(unsigned char *buf, int num);
int RAND_pseudo_bytes(unsigned char *buf, int num);

DESCRIPTION
RAND_bytes(putsnum cryptographically strong pseudo-random bytes mth An error occurs if the
PRNGhas not been seeded with enough randomness to ensure an unpredictable byte sequence.

RAND_pseudo_bytegfutsnum pseudo-random bytes inbuf. Pseudo-random byte sequences gen-
erated byRAND_pseudo_bytesgill be unique if they are of sufficient length, but are not necessarily
unpredictable. They can be used for non-cryptographic purposes and for certain purposes in crypto-
graphic protocols, but usually not for key generation etc.

RETURN VALUES
RAND_bytes(jeturns 1 on success, 0 otherwise. The error code can be obtaiBRiRbyget erro(3).
RAND_pseudo_bytes@turns 1 if the bytes generated are cryptographically strong, O otherwise. Both
functions return -1 if they are not supported by the curRaMD method.

SEE ALSO
rand(3), ERR_get_erro(3), RAND_add3)

HISTORY
RAND_bytes()is available in all versions of SSLeay and OpenSSL. It has a return value since
OpenSSL 0.9.RAND_pseudo_bytesflas added in OpenSSL 0.9.5.

266 2002-09-25 0.9.7c

RAND_cleanup(3) OpenSSL

NAME
RAND_cleanup - erase the PRNG state

SYNOPSIS
#include <openssl/rand.h>

void RAND _cleanup(void);

DESCRIPTION
RAND_cleanup(grases the memory used by HRNG

RETURN VALUE
RAND_cleanup(jeturns no value.

SEE ALSO
rand(3)

HISTORY

RAND_cleanup(js available in all versions of SSLeay and OpenSSL.

0.9.7c 2000-01-27

RAND_cleanup(3)

267

RAND_egd(3) OpenSSL RAND_egd(3)

NAME
RAND_egd — query entropy gathering daemon

SYNOPSIS
#include <openssl/rand.h>

int RAND_egd(const char *path);
int RAND_egd_bytes(const char *path, int bytes);

int RAND_query_egd_bytes(const char *path, unsigned char *buf, int bytes);

DESCRIPTION
RAND_egd(ueries the entropy gathering daen®D on sockepath. It queries 255 bytes and uses
RAND_add3) to seed the OpenSSL built-iPRNG RAND_egd(path) is a wrapper for
RAND_egd_bytes(path, 255);

RAND_egd_bytesQueries the entropy gathering daen&sD on sockepath. It queriesbytes bytes

and usesRAND_add3) to seed the OpenSSL built-PRNG This function is more flexible than
RAND_egd(). When only one secret key must be generated, it is not necessary to request the full
amount 255 bytes from th&GD socket. This can be advantageous, since the amount of entropy that can
be retrieved fronEGD over time is limited.

RAND_query_egd_bytesferforms the actual query of ti®&D daemon on sockatath. If buf is
given,byteshbytes are queried and written irdof. If buf is NULL, bytesbytes are queried and used to
seed the OpenSSL built-FRNGusingRAND_add?3).

NOTES
On systems without /dev/*random devices providing entropy from the kern@&Gthentropy gather-
ing daemon can be used to collect entropy. It provides a socket interface through which entropy can be
gathered in chunks up to 255 bytes. Several chunks can be queried during one connection.

EGD is available from http://www.lothar.com/tech/cryptpe(l Makefile.PL; make; make

install to install). It is run aggd path, wherepathis an absolute path designating a socket. When
RAND_egd()s called with that path as an argument, it tries to read random bytesGthdtas col-
lected. The read is performed in non-blocking mode.

Alternatively, the EGD-interface compatible daemBRNGD can be used. It is available from
http://www.aet.tu—cottbus.de/personen/jaenicke/postfix_tls/prngd.hBRINGD does employ an inter-
nal PRNGitself and can therefore never run out of entropy.

OpenSSL automatically queri€ssD when entropy is requested VRAND bytes(por the status is
checked viaRAND_status()for the first time, if the socket is located at /var/run/egd—pool,
/dev/egd—pool or /etc/egd—pool.

RETURN VALUE
RAND_egd(andRAND_egd_bytes¢eturn the number of bytes read from the daemon on success, and
-1 if the connection failed or the daemon did not return enough data to fully sesiNfae

RAND_query_egd_bytes@turns the number of bytes read from the daemon on success, and -1 if the
connection failed. TheRNGstate is not considered.

SEE ALSO
rand(3), RAND_add3), RAND_cleanug3)

HISTORY
RAND_egd()s available since OpenSSL 0.9.5.

RAND_egd_bytes{$ available since OpenSSL 0.9.6.
RAND_query_egd_bytes§)available since OpenSSL 0.9.7.
The automatic query of /var/run/egd—pool et al was added in OpenSSL 0.9.7.

268 2001-02-10 0.9.7c

RAND _load_file(3) OpenSSL RAND _load_file(3)

NAME
RAND _load_file, RAND_write_file, RAND_file_name — PRNG seed file

SYNOPSIS
#include <openssl/rand.h>

const char *RAND _file_name(char *buf, size_t num);
int RAND _load_file(const char *filename, long max_bytes);
int RAND_write_file(const char *filename);

DESCRIPTION
RAND _file_name(@enerates a default path for the random seedfifepoints to a buffer of sizaum
in which to store the filename. The seed file$RANDFILE if that environment variable is set,
$HOME/.rnd otherwise. #HOMES not set either, onum is too small for the path name, an error
occurs.

RAND_load_file()reads a number of bytes from fifdename and adds them to theRNG If
max_bytesis non—negative, up to tmax_bytesare read; starting with OpenSSL 0.9.5miéx_bytes
is —1, the complete file is read.

RAND_write_file()writes a number of random bytes (currently 1024) toffidgmame which can be
used to initialize th@RNGby callingRAND _load_file()n a later session.

RETURN VALUES
RAND _load_file(yeturns the number of bytes read.

RAND_write_file(returns the number of bytes written, and -1 if the bytes written were generated

without appropriate seed.
RAND _file_name()eturns a pointer tbuf on success, arndULL on error.

SEE ALSO
rand(3), RAND_add3), RAND_cleanug3)

HISTORY
RAND _load_file() RAND_write_file(Jand RAND _file_name(are available in all versions of SSLeay
and OpenSSL.

0.9.7c 2001-03-21 269

RAND_set _rand_method(3) OpenSSL RAND_set _rand_method(3)

NAME
RAND_set_rand_method, RAND_get rand_method, RAND_SSleay - select RAND method

SYNOPSIS
#include <openssl/rand.h>

void RAND_set_rand_method(const RAND _METHOD *meth);
const RAND_METHOD *RAND_get_rand_method(void);
RAND_METHOD *RAND_SSLeay(void);

DESCRIPTION
A RAND_METHOD specifies the functions that OpenSSL uses for random number generation. By
modifying the method, alternative implementations such as hardware RNGs may hBIRO&TANT:
See theNOTESsection for important information about how th&eND API functions are affected by
the use 0ENGINE API calls.

Initially, the default RAND_METHOD is the OpenSSL internal implementation, as returned by
RAND_SSLeay()

RAND_set_default_methodf)akesmeth the method folPRNG use.NB: This is true only whilst no
ENGINE has been set as a default RIND, so this function is no longer recommended.

RAND_get_default_method@turns a pointer to the curreRAND_METHOD. However, the meaning-
fulness of this result is dependant on whetherBR&INE API is being used, so this function is no
longer recommended.

THE RAND_METHOD STRUCTURE

typedef struct rand_meth_st

{
void (*seed)(const void *buf, int num);
int (*bytes)(unsigned char *buf, int num);
void (*cleanup)(void);
void (*add)(const void *buf, int num, int entropy);
int (*pseudorand)(unsigned char *buf, int num);
int (*status)(void);

} RAND_METHOD;

The components point to the implementation RAND_seed() RAND_bytes(),RAND_cleanup()
RAND_add() RAND_pseudo_randgndRAND _status() Each component may JLL if the func-
tion is not implemented.

RETURN VALUES

RAND_set rand_method(eturns no valueRAND_get rand_methodgnd RAND_SSLeay(jeturn
pointers to the respective methods.

NOTES
As of version 0.9.7RAND_METHOD implementations are grouped together with other algorithmic
APIs (eg.RSA_METHOD, EVP_CIPHER etc) INnENGINE modules. If a defaulENGINE is specified for
RAND functionality using afENGINE APIfunction, that will override anRAND defaults set using the
RAND API (ie. RAND_set _rand_method()). For this reason BREINE APl is the recommended way
to control default implementations for useRAND and other cryptographic algorithms.

SEE ALSO
rand(3), enging(3)
HISTORY

RAND_set _rand_method(RAND_get rand_method§nd RAND_SSLeay(are available in all ver-
sions of OpenSSL.

In the engine version of version 0.9BAND_set rand_methodyas altered to take aBNGINE
pointer as its argument. As of version 0.9.7, that has been reverted E$GINE API transparently
overrides RAND defaults if used, otherwiseRAND APl functions work as before.
RAND_set _rand_enginef)as also introduced in version 0.9.7.

270 2002-08-05 0.9.7c

ripemd(3) OpenSSL ripemd(3)

NAME
RIPEMD160, RIPEMD160_Init, RIPEMD160_Update, RIPEMD160 Final — RIPEMD-160 hash
function

SYNOPSIS
#include <openssl/ripemd.h>

unsigned char *RIPEMD160(const unsigned char *d, unsigned long n,
unsigned char *md);

void RIPEMD160_Init(RIPEMD160_CTX *c);

void RIPEMD160_Update(RIPEMD_CTX *c, const void *data,
unsigned long len);

void RIPEMD160_Final(unsigned char *md, RIPEMD160_CTX *c);

DESCRIPTION
RIPEMD-160is a cryptographic hash function with a 160 bit output.

RIPEMD16@) computes th&®@IPEMD-160message digest of tmebytes aid and places it imd (which
must have space fRIPEMD160_DIGEST_LENGTH-= 20 bytes of output). iind is NULL, the digest is
placed in a static array.

The following functions may be used if the message is not completely stored in memory:
RIPEMD160_Init()initializes aRIPEMD160_CTX structure.

RIPEMD160_Update(¢an be called repeatedly with chunks of the message to be hbshbytés at
data).

RIPEMD160_Final() places the message digest imd, which must have space for
RIPEMD160_DIGEST_LENGTH== 20 bytes of output, and erasesRMieREMD160_CTX.

Applications should use the higher level functi@éP_DigestIni{3) etc. instead of calling the hash
functions directly.

RETURN VALUES
RIPEMD16() returns a pointer to the hash value.

RIPEMD160_Init() RIPEMD160_Update(@ndRIPEMD160_Final()do not return values.

CONFORMING TO
ISONIEC 10118-3 (draft) (??)

SEE ALSO
sha(3), hmac(3), EVP_DigestlIni(3)

HISTORY
RIPEMD16(), RIPEMD160_Init() RIPEMD160_Update@ndRIPEMD160_Final()are available since
SSLeay 0.9.0.

0.9.7c 2000-02-25 271

rsa(3)

NAME

OpenSSL rsa(3)

rsa — RSA public key cryptosystem

SYNOPSIS

#include <openssl/rsa.h>
#include <openssl/engine.h>

RSA * RSA_new(void);
void RSA_free(RSA *rsa);

int RSA_public_encrypt(int flen, unsigned char *from,
unsigned char *to, RSA *rsa, int padding);

int RSA_private_decrypt(int flen, unsigned char *from,
unsigned char *to, RSA *rsa, int padding);

int RSA_private_encrypt(int flen, unsigned char *from,
unsigned char *to, RSA *rsa,int padding);

int RSA_public_decrypt(int flen, unsigned char *from,
unsigned char *to, RSA *rsa,int padding);

int RSA_sign(int type, unsigned char *m, unsigned int m_len,
unsigned char *sigret, unsigned int *siglen, RSA *rsa);

int RSA_verify(int type, unsigned char *m, unsigned int m_len,
unsigned char *sigbuf, unsigned int siglen, RSA *rsa);

int RSA_size(const RSA *rsa);

RSA *RSA_generate_key(int num, unsigned long e,
void (*callback)(int,int,void *), void *cb_arg);

int RSA_check_key(RSA *rsa);

int RSA_blinding_on(RSA *rsa, BN_CTX *ctx);
void RSA_blinding_off(RSA *rsa);

void RSA_set_default_method(const RSA_METHOD *meth);
const RSA_ METHOD *RSA_get_default_method(void);

int RSA_set_method(RSA *rsa, const RSA_METHOD *meth);
const RSA_METHOD *RSA_get _method(const RSA *rsa);
RSA_METHOD *RSA_PKCS1 SSLeay(void);
RSA_METHOD *RSA_null_method(void);

int RSA_flags(const RSA *rsa);

RSA *RSA_new_method(ENGINE *engine);

int RSA_print(BIO *bp, RSA *x, int offset);
int RSA_print_fp(FILE *fp, RSA *x, int offset);

int RSA_get_ex_new_index(long argl, char *argp, int (*new_func)(),
int (*dup_func)(), void (*free_func)());

int RSA_set_ex_data(RSA *r,int idx,char *arg);

char *RSA_get_ex_data(RSA *r, int idx);

int RSA_sign_ASN1_OCTET_STRING(int dummy, unsigned char *m,
unsigned int m_len, unsigned char *sigret, unsigned int *siglen,
RSA *rsa);

int RSA_ verify ASN1 _OCTET_STRING(int dummy, unsigned char *m,
unsigned int m_len, unsigned char *sigbuf, unsigned int siglen,
RSA *rsa);

DESCRIPTION

272

These functions implemeRISA public key encryption and signatures as defingeki@S#1 v2.0 RFC
2437].

The RSA structure consists of seveBIGNUM components. It can contain public as well as private
RSAkeys:

2002-08-04 0.9.7c

rsa(3)

OpenSSL rsa(3)

struct
{
BIGNUM *n; /I public modulus
BIGNUM *e; /I public exponent
BIGNUM *d; /I private exponent
BIGNUM *p; /I secret prime factor
BIGNUM *q; /I secret prime factor
BIGNUM *dmp1; /I d mod (p-1)
BIGNUM *dmq1; /I d mod (g-1)
BIGNUM *igmp; /I q"-1 mod p
...
2

RSA

In public keys, the private exponent and the related secret valugsidre

p, d, dmpl, dmqgl andigmp may beNULL in private keys, but th&SA operations are much faster
when these values are available.

Note thatRSA keys may use non-standaR$A METHOD implementations, either directly or by the
use of ENGINE modules. In some cases (eg. BEMGINE providing support for hardware-embedded
keys), thes®IGNUM values will not be used by the implementation or may be used for alternative data
storage. For this reason, applications should generally avoid RSigtructure elements directly and
instead us@PI functions to query or modify keys.

CONFORMING TO

SSL, PKCS#1 v2.0

PATENTS

RSAwas covered by 8S patent which expired in September 2000.

SEE ALSO

0.9.7c

rsa(1), bn(3), dsa(3), dh(3), rand(3), enging(3), RSA_new3), RSA public_encry8), RSA_sigii3),
RSA_siz€3), RSA generate k€§), RSA check kég), RSA blinding_o(B3), RSA_set_methdd),
RSA_prin(3), RSA_get_ex_new_indé, RSA_private_encryg8),
RSA_sign_ASN1 OCTET_STRI{$% RSA padding_add PKCS1_typé3)1L

2002-08-04 273

RSA_blinding_on(3) OpenSSL RSA_blinding_on(3)

NAME
RSA_blinding_on, RSA_blinding_off — protect the RSA operation from timing attacks

SYNOPSIS
#include <openssl/rsa.h>

int RSA_blinding_on(RSA *rsa, BN_CTX *ctx);
void RSA_blinding_off(RSA *rsa);

DESCRIPTION
RSAIis vulnerable to timing attacks. In a setup where attackers can measure theRaaletryption
or signature operations, blinding must be used to prote&3A@peration from that attack.

RSA_blinding_on(@urns blinding on for keysa and generates a random blinding facttx.is NULL

or a pre-allocated and initializ&&N_CTX. The random number generator must be seeded prior to call-
ing RSA_blinding_on()

RSA_blinding_off(Qurns blinding off and frees the memory used for the blinding factor.

RETURN VALUES
RSA_blinding_on()eturns 1 on success, and 0 if an error occurred.

RSA_blinding_off(jeturns no value.

SEE ALSO
rsa(3), rand(3)

HISTORY
RSA_blinding_on@ndRSA_blinding_off(appeared in SSLeay 0.9.0.

274 2000-02-24 0.9.7c

RSA_check key(3) OpenSSL RSA_check key(3)

NAME
RSA_check key — validate private RSA keys

SYNOPSIS
#include <openssl/rsa.h>

int RSA_check_key(RSA *rsa);

DESCRIPTION
This function validateRSA keys. It checks that andq are in fact prime, and that= p*q.

It also checks that*e = 1 mod (p—1*g-1) and thatdmpl, dmqgl andigmp are set correctly or are
NULL .

As such, this function can not be used with any arbitR8x key object, even if it is otherwise fit for
regularRSA operation. SesBlOTES for more information.

RETURN VALUE
RSA_check_key(eturns 1 ifrsais a validRSA key, and 0 otherwise. -1 is returned if an error occurs
while checking the key.

If the key is invalid or an error occurred, the reason code can be obtaine&R&inget_erro(3).

NOTES
This function does not work dRSA public keys that have only the modulus and public exponent ele-
ments populated. It performs integrity checks on allRB@& key material, so th&®SA key structure
must contain all the private key data too.

Unlike most otherRSA functions, this function doemsot work transparently with any underlying
ENGINE implementation because it uses the key data iRgrestructure directly. ArFENGINE imple-
mentation can override the way key data is stored and handled, and can even provide sujp®kirt for
keys — in which case thRSA structure may containo key data at all' If theENGINE in question is
only being used for acceleration or analysis purposes, then in all likeliho®b#hkey data is com-
plete and untouched, but this can’'t be assumed in the general case.

BUGS
A method of verifying theRSA key using opaqu&®SA API functions might need to be considered.
Right now RSA check_key(simply uses theRSA structure elements directly, bypassing the
RSA_METHOD table altogether (and completely violating encapsulation and object-orientation in the
process). The best fix will probably be to introduce a “check _key()” handler te3AeMETHOD
function table so that alternative implementations can also provide their own verifiers.

SEE ALSO
rsa(3), ERR_get_erro(3)

HISTORY
RSA_check_keyéppeared in OpenSSL 0.9.4.

0.9.7c 2002-09-25 275

RSA_generate_key(3) OpenSSL RSA_generate_key(3)

NAME
RSA_generate_key — generate RSA key pair

SYNOPSIS
#include <openssl/rsa.h>

RSA *RSA_generate_key(int num, unsigned long e,
void (*callback)(int,int,void *), void *cb_arg);

DESCRIPTION
RSA_generate_keygenerates a key pair and returns it in a newly alloc@8dstructure. The pseudo-
random number generator must be seeded prior to cRf#g generate _key()

The modulus size will baum bits, and the public exponent will e Key sizes witmum < 1024
should be considered insecure. The exponent is an odd number, typically 3, 17 or 65537.

A callback function may be used to provide feedback about the progress of the key generatibn. If
back is notNULL, it will be called as follows:

* While a random prime number is generated, it is called as descriB&d generate_prim).

When the n—th randomly generated prime is rejected as not suitable for ttealk®ck(2, n,
cb_arg)is called.

« When a random p has been found with p-1 relatively prime ibis called asallback(3, 0,
cb_arg).
The process is then repeated for prime q wéltback(3, 1, cb_arg)

RETURN VALUE
If key generation fails RSA generate keyfeturns NULL ; the error codes can be obtained by
ERR_get_erro(3).

BUGS
callback(2, x, cb_arg)is used with two different meanings.

RSA_generate_keygbes into an infinite loop for illegal input values.

SEE ALSO
ERR_get_erro€3), rand(3), rsa(3), RSA_freg3)

HISTORY
Thecb_argargument was added in SSLeay 0.9.0.

276 2002-09-25 0.9.7c

RSA_get _ex_new_index(3) OpenSSL RSA_get _ex_new_index(3)

NAME

RSA_get ex_new_index, RSA set ex data, RSA get ex data — add application specific data to RSA
structures

SYNOPSIS

#include <openssl/rsa.h>

int RSA_get_ex_new_index(long argl, void *argp,
CRYPTO_EX_ new *new_func,
CRYPTO_EX_ dup *dup_func,
CRYPTO_EX free *free_func);

int RSA_set_ex_data(RSA *r, int idx, void *arg);

void *RSA _get_ex_data(RSA *r, int idx);

typedef int new_func(void *parent, void *ptr, CRYPTO_EX_ DATA *ad,
int idx, long argl, void *argp);

typedef void free_func(void *parent, void *ptr, CRYPTO_EX_DATA *ad,
int idx, long argl, void *argp);

typedef int dup_func(CRYPTO_EX_ DATA *to, CRYPTO_EX_DATA *from, void *from_d,
int idx, long argl, void *argp);

DESCRIPTION

0.9.7c

Several OpenSSL structures can have application specific data attached to them. This has several
potential uses, it can be used to cache data associated with a structure (for example the hash of some
part of the structure) or some additional data (for example a handle to the data in an external library).

Since the application data can be anything at all it is passed and retriewsadh$ type.

The RSA _get_ex_new_index() function is initially called to “register” some new application specific

data. It takes three optional function pointers which are called when the parent structure (in this case an
RSA structure) is initially created, when it is copied and when it is freed up. If any or all of these func-
tion pointer arguments are not used they should be 9¢t/ta. The precise manner in which these
function pointers are called is described in more detail beR® get ex_new_index() also takes
additional long and pointer parameters which will be passed to the supplied functions but which other-
wise have no special meaning. It returnsretiex which should be stored (typically in a static variable)

and passed used in thiex parameter in the remaining functions. Each successful call to
RSA get_ex_new_index() will return an index greater than any previously returned, this is important
because the optional functions are called in order of increasing index value.

RSA set ex_data() is used to set application specific data, the data is suppliedangtiparameter and
its precise meaning is up to the application.

RSA get ex_data() is used to retrieve application specific data. The data is returned to the application,
this will be the same value as supplied to a prevRis_set_ex_data() call.

new_func() is called when a structure is initially allocated (for example W#A new(). The parent
structure members will not have any meaningful values at this point. This function will typically be
used to allocate any application specific structure.

free func() is called when a structure is being freed up. The dynamic parent structure members should
not be accessed because they will be freed up when this function is called.

new_func() andfree func() take the same parametepsrent is a pointer to the pareRiSA structure.

ptr is a the application specific data (this wont be of much usevinfunc(). ad is a pointer to the
CRYPTO_EX_DATA structure from the paremSA structure: the function€RYPTO get ex_data()
andCRYPTO_set ex_data() can be called to manipulate it. Tlix parameter is the index: this will be

the same value returned IRSA get ex_new_index() when the functions were initially registered.
Finally theargl andargp parameters are the values originally passed to the same corresponding param-
eters wherRSA_get_ex_new_index() was called.

dup_func() is called when a structure is being copied. Pointers to the destination and source
CRYPTO_EX_DATA structures are passed in tteeand from parameters respectively. THieom_d
parameter is passed a pointer to the source application data when the function is called, when the func-
tion returns the value is copied to the destination: the application can thus modify the data pointed to by

2000-09-14 277

RSA_get _ex_new_index(3) OpenSSL RSA_get _ex_new_index(3)

from_dand have different values in the source and destinationidXhargl andargp parameters are
the same as thosemmaw_func() andfree func().

RETURN VALUES
RSA get_ex_new_index() returns a new index or —1 on failure (note 0 is a valid index value).

RSA set_ex_data() returns 1 on success or 0 on failure.

RSA get_ex_data() returns the application data or 0 on failure. 0 may also be valid application data but
currently it can only fail if given an invalidix parameter.

new_func() anddup_func() should return 0O for failure and 1 for success.
On failure an error code can be obtained fEEBRR_get_erro3).

BUGS
dup_func() is currently never called.

The return value afiew_func() is ignored.

Thenew_func() function isn't very useful because no meaningful values are present in the pagent
structure when it is called.

SEE ALSO
rsa(3), CRYPTO_set_ex_datd)

HISTORY
RSA_get _ex_new_indexRSA_set _ex_datadhdRSA_get ex_ datagye available since SSLeay 0.9.0.

278 2000-09-14 0.9.7c

RSA_new(3) OpenSSL RSA_new(3)

NAME
RSA_new, RSA free — allocate and free RSA objects

SYNOPSIS
#include <openssl/rsa.h>
RSA * RSA_new(void);
void RSA_free(RSA *rsa);
DESCRIPTION

RSA_new() allocates and initializes anRSA structure. It is equivalent to calling
RSA_new_method(ULL).

RSA_free()frees theRSA structure and its components. The key is erased before the memory is
returned to the system.

RETURN VALUES
If the allocation fails,RSA_new()returnsNULL and sets an error code that can be obtained by
ERR_get_erro(3). Otherwise it returns a pointer to the newly allocated structure.

RSA_free(yeturns no value.

SEE ALSO
ERR_get_erro(3), rsa(3), RSA generate ké€§), RSA new_methdd)

HISTORY
RSA_new(andRSA _free(pre available in all versions of SSLeay and OpenSSL.

0.9.7c 2002-09-25 279

RSA_padding_add_PKCS1 type 1(3) OpenSSL RSA_padding_add_PKCS1_type 1(3)

NAME

RSA_padding_add_PKCS1 type 1, RSA_padding_check PKCS1 type 1, RSA_pad-
ding_add_PKCS1 type 2, RSA padding check PKCS1 type 2, RSA padding _add PKCS1 OAEP,
RSA_padding_check PKCS1 OAEP, RSA padding add SSLv23, RSA_padding_check SSLv23,
RSA_padding_add_none, RSA_padding_check none — asymmetric encryption padding

SYNOPSIS

#include <openssl/rsa.h>

int RSA_padding_add PKCS1_type 1(unsigned char *to, int tlen,
unsigned char *f, int fl);

int RSA_padding_check PKCS1 type 1(unsigned char *to, int tlen,
unsigned char *f, int fl, int rsa_len);

int RSA_padding_add PKCS1_type 2(unsigned char *to, int tlen,
unsigned char *f, int fl);

int RSA_padding_check PKCS1 type 2(unsigned char *to, int tlen,
unsigned char *f, int fl, int rsa_len);

int RSA_padding_add PKCS1_OAEP(unsigned char *to, int tlen,
unsigned char *f, int fl, unsigned char *p, int pl);

int RSA_padding_check PKCS1_ OAEP(unsigned char *to, int tlen,
unsigned char *f, int fl, int rsa_len, unsigned char *p, int pl);

int RSA_padding_add_SSLv23(unsigned char *to, int tlen,
unsigned char *f, int fl);

int RSA_padding_check SSLv23(unsigned char *to, int tlen,
unsigned char *f, int fl, int rsa_len);

int RSA_padding_add_none(unsigned char *to, int tlen,
unsigned char *f, int fl);

int RSA_padding_check none(unsigned char *to, int tlen,
unsigned char *f, int fl, int rsa_len);

DESCRIPTION

280

The RSA_padding_xxx_xxx{)nctions are called from thHeSA encrypt, decrypt, sign and verify func-
tions. Normally they should not be called from application programs.

However, they can also be called directly to implement padding for other asymmetric ciphers.
RSA_padding_add_PKCS1 OAER()d RSA padding_check PKCS1 OAER{ay be used in an
application combined witRSA_NO_PADDING in order to implemenbAEP with an encoding parame-

ter.

RSA_padding_add_xxxénhcodedl bytes fromf so as to fit intdlen bytes and stores the resulttat
An error occurs ifl does not meet the size requirements of the encoding method.

The following encoding methods are implemented:

PKCS1 type 1
PKCS#1 v2.0 EMSA-PKCS1-vl_3KCS#1 v1.5 block type 1); used for signatures

PKCS1 type 2
PKCS#1 v2.0 EME-PKCS1-v1l_ 3PKCS#1 v1.5 block type 2)

PKCS1_OAEP
PKCS#1 v2.0 EME-OAEP

SSLv23
PKCS#1 EME-PKCS1-v1_5 with SSL-specific modification

none
simply copy the data

The random number generator must be seeded prior to daliAg padding_add_xxx().

2000-02-24 0.9.7c

RSA_padding_add_PKCS1 type 1(3) OpenSSL RSA_padding_add_PKCS1_type 1(3)

RSA_padding leck xxx()verifies that thdl bytes aff contain a valid encoding forraa_lenbyte RSA
key in the respective encoding method and stores the recovered data of atemdsttes (for
RSA_NO_PADDING: of sizetlen) atto.

For RSA padding_xxx_OAEPR(points to the encoding parameter of lengthp may beNULL if pl
is 0.

RETURN VALUES

TheRSA_padding_add_xxx{)nctions return 1 on success, 0 on error. RBA padding_check xxx()
functions return the length of the recovered data, —1 on error. Error codes can be obtained by calling
ERR_get_erro(3).

SEE ALSO

RSA_public_encry(§8), RSA_private_decry8), RSA _sigri3), RSA verify3)

HISTORY

0.9.7c

RSA_padding_add_PKCS1 type, 1() RSA_padding_check PKCS1 type, 1() RSA_ pad-
ding_add_PKCS1_type 2() RSA_padding_check_PKCS1_type, 2(RSA padding_add_SSLv23()
RSA_padding_check SSLv23IRSA padding_add _nonegnd RSA_ padding_check_noneppeared
in SSLeay 0.9.0.

RSA_padding_add_PKCS1 OAEP@nd RSA padding check PKCS1 OAEPQ@ere added in
OpenSSL 0.9.2b.

2000-02-24 281

RSA_print(3) OpenSSL RSA_print(3)

NAME
RSA _print, RSA print_fp, DSAparams_print, DSAparams_print_fp, DSA_print, DSA_print_fp,
DHparams_print, DHparams_print_fp — print cryptographic parameters

SYNOPSIS
#include <openssl/rsa.h>
int RSA_print(BIO *bp, RSA *x, int offset);
int RSA_print_fp(FILE *fp, RSA *x, int offset);
#include <openssl/dsa.h>
int DSAparams_print(BIO *bp, DSA *X);
int DSAparams_print_fp(FILE *fp, DSA *x);
int DSA_print(BIO *bp, DSA *x, int offset);
int DSA_print_fp(FILE *fp, DSA *x, int offset);

#include <openssl/dh.h>

int DHparams_print(BIO *bp, DH *x);

int DHparams_print_fp(FILE *fp, DH *Xx);
DESCRIPTION

A human-readable hexadecimal output of the components ¢i3A&key, DSA parameters or key or
DH parameters is printed tap or fp.

The output lines are indented bffset spaces.

RETURN VALUES
These functions return 1 on success, 0 on error.

SEE ALSO
dh(3), dsa(3), rsa(3), BN_bn2bin(3)
HISTORY
RSA_print() RSA_print_fp()DSA_print(),DSA_print_fp() DH_print(), DH_print_fp()are available in

all versions of SSLeay and OpenSSDSAparams_print(and DSAparams_print_pf()vere added in
SSLeay 0.8.

282 2002-11-29 0.9.7c

RSA_private_encrypt(3) OpenSSL RSA_private_encrypt(3)

NAME
RSA_private_encrypt, RSA_public_decrypt - low level signature operations

SYNOPSIS
#include <openssl/rsa.h>

int RSA_private_encrypt(int flen, unsigned char *from,
unsigned char *to, RSA *rsa, int padding);

int RSA_public_decrypt(int flen, unsigned char *from,
unsigned char *to, RSA *rsa, int padding);

DESCRIPTION
These functions handRSA signatures at a low level.

RSA_private_encryptfigns theflen bytes afrom (usually a message digest with an algorithm identi-
fier) using the private kessa and stores the signaturetim to must point toRSA_size(rsa)bytes of
memory.

padding denotes one of the following modes:

RSA_PKCS1_PADDING
PKCS#1 v1.5 padding. This function does not handlealgerithmlidentifier specified inPKCS
#1. When generating or verifyirRKCS#1 signaturedRSA_sigii3) andRSA_verify3) should be
used.

RSA_NO_PADDING
Raw RSA signature. This mode shoutthly be used to implement cryptographically sound pad-
ding modes in the application code. Signing user data directlyR8itHs insecure.

RSA_public_decryptfecovers the message digest fromftae bytes long signature &om using the
signer’s public keyrsa. to must point to a memory section large enough to hold the message digest
(which is smaller thafRSA_size(rsa) — 11)padding is the padding mode that was used to sign the
data.

RETURN VALUES
RSA_private_encrypt@eturns the size of the signature (i.e., RSA_size(r&3)A public_decrypt()
returns the size of the recovered message digest.

On error, =1 is returned; the error codes can be obtain&RBy get_erro(3).

SEE ALSO
ERR_get_erro(3), rsa(3), RSA_sigii3), RSA verify3)

HISTORY
Thepadding argument was added in SSLeay ®R8A_NO_PADDINGIs available since SSLeay 0.9.0.

0.9.7c 2002-09-25 283

RSA_public_encrypt(3) OpenSSL RSA_public_encrypt(3)

NAME
RSA_public_encrypt, RSA_ private_decrypt — RSA public key cryptography
SYNOPSIS
#include <openssl/rsa.h>

int RSA_public_encrypt(int flen, unsigned char *from,
unsigned char *to, RSA *rsa, int padding);

int RSA_private_decrypt(int flen, unsigned char *from,
unsigned char *to, RSA *rsa, int padding);

DESCRIPTION
RSA_public_encrypt@ncrypts thdlen bytes atfrom (usually a session key) using the public ke
and stores the ciphertexttim. to must point to RSA_sizega) bytes of memory.

padding denotes one of the following modes:

RSA_PKCS1_PADDING
PKCS#1 v1.5 padding. This currently is the most widely used mode.

RSA_PKCS1_OAEP_PADDING
EME-OAEP as defined iRKCS#1 v2.0 withSHA-1, MGF1 and an empty encoding parameter.
This mode is recommended for all new applications.

RSA_SSLV23_PADDING
PKCS#1 v1.5 padding with an SSL-specific modification that denotes that the se3gtBisapa-
ble.

RSA_NO_PADDING
Raw RSA encryption. This mode shoutthly be used to implement cryptographically sound pad-
ding modes in the application code. Encrypting user data directlyRSithis insecure.

flen must be less than RSA_sired) — 11 for thePKCS#1 v1.5 based padding modes, and less than
RSA_sizefsa) — 41 forRSA_PKCS1_OAEP_PADDINGThe random number generator must be seeded
prior to callingRSA_public_encrypt()

RSA_private_decryptfecrypts thdlen bytes afrom using the private kegsa and stores the plaintext
in to. to must point to a memory section large enough to hold the decrypted data (which is smaller than
RSA_size(sa)). padding is the padding mode that was used to encrypt the data.

RETURN VALUES
RSA_public_encrypt(returns the size of the encrypted data (i.e., RSA rs@p(RSA_pri-
vate_decrypt(yeturns the size of the recovered plaintext.

On error, =1 is returned; the error codes can be obtain&RBy get_erro(3).

CONFORMING TO
SSL, PKCS#1 v2.0

SEE ALSO
ERR_get_erro€3), rand(3), rsa(3), RSA_siz€3)

HISTORY
The padding argument was added in SSLeay (R8A_NO_PADDINGis available since SSLeay 0.9.0,
OAEPwas added in OpenSSL 0.9.2b.

284 2002-09-25 0.9.7c

RSA_set_method(3) OpenSSL RSA_set_method(3)

NAME
RSA_set_default_method, RSA_get default_method, RSA_set_method, RSA_get _method,
RSA_PKCS1 _SSLeay, RSA null_method, RSA flags, RSA new_method - select RSA method

SYNOPSIS
#include <openssl/rsa.h>

void RSA_set_default_method(const RSA_METHOD *meth);
RSA_METHOD *RSA_get default_method(void);

int RSA_set_method(RSA *rsa, const RSA_METHOD *meth);
RSA_METHOD *RSA_get _method(const RSA *rsa);
RSA_METHOD *RSA_PKCS1 SSLeay(void);
RSA_METHOD *RSA_null_method(void);

int RSA_flags(const RSA *rsa);

RSA *RSA_new_method(RSA METHOD *method);

DESCRIPTION
An RSA_METHOD specifies the functions that OpenSSL usesRfaa operations. By modifying the
method, alternative implementations such as hardware accelerators may beIRGBIANT: See the
NOTESsection for important information about how th&®A APIfunctions are affected by the use of
ENGINE API calls.

Initially, the default RSA_METHOD is the OpenSSL internal implementation, as returned by
RSA_PKCS1_SSLeay()

RSA_set_default_methodflakesmeth the default method for alRSA structures created latexB:
This is true only whilst n&NGINE has been set as a default R8A, so this function is no longer rec-
ommended.

RSA_get default_method6turns a pointer to the current defa&R#A_ METHOD. However, the mean-
ingfulness of this result is dependant on whethelEtW@INE APIis being used, so this function is no
longer recommended.

RSA_set_method@electsmeth to perform all operations using the kesa. This will replace the
RSA_METHODused by theRSA key and if the previous method was supplied bERGINE, the han-
dle to thatENGINE will be released during the change. It is possible to R&4keys that only work
with certainRSA_METHOD implementations (eg. from aBNGINE module that supports embedded
hardware-protected keys), and in such cases attempting to charR@Ath¢ETHOD for the key can
have unexpected results.

RSA_get_method(gturns a pointer to tHRSA_METHODbeing used bysa. This method may or may

not be supplied by aBNGINE implementation, but if it is, the return value can only be guaranteed to be
valid as long as th&RSA key itself is valid and does not have its implementation changed by
RSA_set_method()

RSA_flags(jeturns thdlagsthat are set forsa’s currentRSA_METHOD See theBUGS section.

RSA_new_method@)locates and initializes aRSA structure so thagénginewill be used for theRSA
operations. Ifengine is NULL, the defaultENGINE for RSA operations is used, and if no default
ENGINE is set, the(RSA_METHODcontrolled byRSA_set_default_method)used.

RSA_flags(Jeturns thdlagsthat are set forsa’s current method.

RSA_new_methodé)locates and initializes a@SA structure so thahethod will be used for theRSA
operations. Iimethodis NULL , the default method is used.

THE RSA_METHOD STRUCTURE
typedef struct rsa_meth_st

{

/* name of the implementation */
const char *name;

0.9.7c 2002-09-25 285

RSA_set_method(3) OpenSSL RSA_set_method(3)

[* encrypt */
int (*rsa_pub_enc)(int flen, unsigned char *from,
unsigned char *to, RSA *rsa, int padding);

[* verify arbitrary data */
int (*rsa_pub_dec)(int flen, unsigned char *from,
unsigned char *to, RSA *rsa, int padding);

/* sign arbitrary data */
int (*rsa_priv_enc)(int flen, unsigned char *from,
unsigned char *to, RSA *rsa, int padding);

[* decrypt */
int (*rsa_priv_dec)(int flen, unsigned char *from,
unsigned char *to, RSA *rsa, int padding);

/* compute r0 = r0 " I mod rsa->n (May be NULL for some
implementations) */
int (*rsa_mod_exp)(BIGNUM *r0, BIGNUM *|, RSA *rsa);

/* compute r =a "~ p mod m (May be NULL for some implementations) */
int (*bn_mod_exp)(BIGNUM *r, BIGNUM *a, const BIGNUM *p,
const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *m_ctx);

/* called at RSA_new */

int (*init)(RSA *rsa);
/* called at RSA_free */
int (*finish)(RSA *rsa);
/* RSA_FLAG_EXT_PKEY - rsa_mod_exp is called for private key
* 0 perations, even if p,q,dmpl1,dmqgl,igmp
* are NULL
* RSA_FLAG_SIGN_VER - enable rsa_sign and rsa_verify
* RSA_METHOD_FLAG_NO_CHECK - don't check pub/private match
*/
int flags;

char *app_data; /* ?? */

/* sign. For backward compatibility, this is used only
* if (flags & RSA_FLAG_SIGN_VER)
*/
int (*rsa_sign)(int type, unsigned char *m, unsigned int m_len,
unsigned char *sigret, unsigned int *siglen, RSA *rsa);

[* verify. For backward compatibility, this is used only
* if (flags & RSA_FLAG_SIGN_VER)
*/
int (*rsa_verify)(int type, unsigned char *m, unsigned int m_len,
unsigned char *sigbuf, unsigned int siglen, RSA *rsa);

} RSA_METHOD;

RETURN VALUES
RSA_PKCS1_SSlLeay() @RSA_PKCS1_null_method() @ RSA_get default_method() and
RSA_get_method(gturn pointers to the respective RSA_METHODSs.

RSA_set_default_methodéturns no value.

RSA_set_methodfgturns a pointer to the oRISA_METHODimplementation that was replaced. How-
ever, this return value should probably be ignored because if it was supplie&R@IAE, the pointer
could be invalidated at any time if tl®NGINE is unloaded (in fact it could be unloaded as a result of
the RSA _set_methodflinction releasing its handle to tiENGINE). For this reason, the return type
may be replaced withwid declaration in a future release.

RSA_new_method@turnsNULL and sets an error code that can be obtainddRfy _get_errof3) if
the allocation fails. Otherwise it returns a pointer to the newly allocated structure.

286 2002-09-25 0.9.7c

RSA_set_method(3) OpenSSL RSA_set_method(3)

NOTES
As of version 0.9.7RSA_METHODimplementations are grouped together with other algorithmic APIs
(eg. DSA_METHOD, EVP_CIPHER etc) intoENGINE modules. If a defaulENGINE is specified for
RSA functionality using arENGINE APIfunction, that will override anRSA defaults set using thHeSA
API (ie. RSA set_default_method(For this reason, thHeENGINE APIis the recommended way to con-
trol default implementations for use R8A and other cryptographic algorithms.

BUGS
The behaviour oRSA _flags()s a mis-feature that is left as-is for now to avoid creating compatibility
problems.RSA functionality, such as the encryption functions, are controlled bylabe value in the
RSA key itself, not by thélagsvalue in theRSA_METHODattached to th&SA key (which is what this
function returns). If the flags element of RBA key is changed, the changes will be honoure®&x
functionality but will not be reflected in the return value of R8A flags(function — in effect
RSA_flags(behaves more like @RSA_default_flagsflunction (which does not currently exist).

SEE ALSO
rsa(3), RSA_newl)

HISTORY
RSA_new_method() and RSA_set_default_method() appeared in SSleay 0.8.
RSA_get default_method@®SA set method@gnd RSA_get method@s well as the rsa_sign and
rsa_verify components &SA_METHODwere added in OpenSSL 0.9.4.

RSA_set_default_openssl_method() and RSA get default_openssl_method() replaced
RSA_set_default_method§hd RSA_get default_method{@spectively, andRSA set _method@nd
RSA_new_method@ere altered to useNGINES rather tharRSA_METHODS during development of

the engine version of OpenSSL 0.9.6. For 0.9.7, the handling of defaults ENEGISE API was
restructured so that this change was reversed, and behaviour of the other functions resembled more
closely the previous behaviour. The behaviour of defaults IER&NE API now transparently over-

rides the behaviour of defaults in tRBA APIwithout requiring changing these function prototypes.

0.9.7c 2002-09-25 287

RSA_sign(3) OpenSSL RSA_sign(3)

NAME
RSA_sign, RSA_verify — RSA signatures

SYNOPSIS
#include <openssl/rsa.h>

int RSA_sign(int type, unsigned char *m, unsigned int m_len,
unsigned char *sigret, unsigned int *siglen, RSA *rsa);

int RSA_verify(int type, unsigned char *m, unsigned int m_len,
unsigned char *sigbuf, unsigned int siglen, RSA *rsa);

DESCRIPTION
RSA_sign(¥igns the message digestof sizem_lenusing the private keysa as specified iPKCS#1

v2.0. It stores the signature isigret and the signature size imiglen sigret must point to
RSA_size(sa) bytes of memory.

type denotes the message digest algorithm that was used to genetatsually is one oNID_shal,
NID_ripemd160 andNID_md5; seeobjectq3) for details. Iftype is NID_md5_shal, anSSL signa-
ture (MD5 andSHA1 message digests witKCS#1 padding and no algorithm identifier) is created.

RSA_verify(\erifies that the signatusggbuf of sizesiglenmatches a given message digesof size
m_len. type denotes the message digest algorithm that was used to generate the sigsaisrthe
signer’s public key.

RETURN VALUES
RSA_sign(yeturns 1 on success, 0 otherwisSA _verify(yeturns 1 on successful verification, 0 oth-
erwise.

The error codes can be obtained2BR_get_errof3).

BUGS
Certain signatures with an improper algorithm identifier are accepted for compatibility with SSLeay
0.4.5:-)

CONFORMING TO
SSL, PKCS#1 v2.0

SEE ALSO
ERR_get_erro(3), objectq3), rsa(3), RSA_private_encry8), RSA public_decry8)

HISTORY
RSA_sign(andRSA _verify(are available in all versions of SSLeay and OpenSSL.

288 2002-09-25 0.9.7c

RSA_sign_ASN1_OCTET_STRING(3) OpenSSL RSA_sign_ASN1_OCTET_STRING(3)

NAME
RSA_sign_ASN1 OCTET_STRING, RSA_verify ASN1 OCTET_STRING — RSA signatures

SYNOPSIS
#include <openssl/rsa.h>

int RSA_sign_ASN1_OCTET_STRING(int dummy, unsigned char *m,
unsigned int m_len, unsigned char *sigret, unsigned int *siglen,
RSA *rsa);

int RSA_ verify ASN1 _OCTET_STRING(int dummy, unsigned char *m,
unsigned int m_len, unsigned char *sigbuf, unsigned int siglen,
RSA *rsa);
DESCRIPTION
RSA_sign_ASN1 OCTET_STRIN&@ns the octet stringh of sizem_len using the private keysa
represented IDER using PKCS#1 padding. It stores the signaturesigret and the signature size in
siglen sigret must point tadRSA_size(rsakbytes of memory.

dummy is ignored.
The random number generator must be seeded prior to daliAgsign ASN1 _OCTET_STRING()

RSA verify ASN1_OCTET_STRIN®&jifies that the signatussgbuf of sizesiglenis theDER repre-
sentation of a given octet strimg of sizem_len. dummy is ignoredrsais the signer’s public key.

RETURN VALUES
RSA _sign_ASN1 OCTET_STRING(yeturns 1 on success, 0 otherwise.RSA ver-
ify ASN1 _OCTET_STRING®turns 1 on successful verification, O otherwise.

The error codes can be obtained®BR_get_errof3).

BUGS
These functions serve no recognizable purpose.

SEE ALSO
ERR_get_erro(3), objectq3), rand(3), rsa(3), RSA_sigii3), RSA verify3)

HISTORY
RSA_sign_ASN1 OCTET_STRIN&@MRSA verify ASN1 OCTET_STRIN®Ere added in SSLeay

0.8.

0.9.7c 2002-09-25 289

RSA_size(3) OpenSSL RSA_size(3)

NAME
RSA_size — get RSA modulus size

SYNOPSIS
#include <openssl/rsa.h>

int RSA_size(const RSA *rsa);

DESCRIPTION
This function returns th&SA modulus size in bytes. It can be used to determine how much memory
must be allocated for &RSA encrypted value.

rsa—>n must not beNULL .

RETURN VALUE
The size in bytes.

SEE ALSO
rsa(3)

HISTORY
RSA_size(s available in all versions of SSLeay and OpenSSL.

290 2002-08-05 0.9.7c

sha(3) OpenSSL sha(3)

NAME
SHAL, SHAL1 Init, SHA1 Update, SHA1 Final — Secure Hash Algorithm

SYNOPSIS
#include <openssl/sha.h>

unsigned char *SHA1(const unsigned char *d, unsigned long n,
unsigned char *md);

void SHAL_ Init(SHA CTX *c);

void SHA1 Update(SHA_CTX *c, const void *data,

unsigned long len);
void SHA1_Final(unsigned char *md, SHA CTX *c);

DESCRIPTION
SHA-1 (Secure Hash Algorithm) is a cryptographic hash function with a 160 bit output.

SHAX) computes th&sHA-1 message digest of thebytes atd and places it irmd (which must have
space folISHA_DIGEST_LENGTH== 20 bytes of output). ifnd is NULL, the digest is placed in a static
array.

The following functions may be used if the message is not completely stored in memory:
SHAL_Init()initializes aSHA_CTX structure.
SHA1 Update(fan be called repeatedly with chunks of the message to be hishiegtés adata).

SHAL_Final()places the message digestid, which must have space f8BHA_DIGEST_LENGTH==
20 bytes of output, and erases #teA_CTX.

Applications should use the higher level functi@éP_DigestIni{3) etc. instead of calling the hash
functions directly.

The predecessor &HA-1, SHA, is also implemented, but it should be used only when backward com-

patibility is required.
RETURN VALUES
SHAX) returns a pointer to the hash value.
SHAL Init() SHA1 Update(®ndSHA1_Final()do not return values.

CONFORMING TO
SHA: US Federal Information Processing Standares PUB180 (Secure Hash Standar@HA-1: US
Federal Information Processing Standaifls PUB180-1 (Secure Hash Standar)SI X9.30

SEE ALSO
ripemd(3), hmac(3), EVP_DigestlIni(3)

HISTORY
SHAYX), SHA1_Init() SHA1_Update(and SHA1_Final()are available in all versions of SSLeay and
OpenSSL.

0.9.7c 2000-02-25 291

SMIME_read_PKCS7(3) OpenSSL SMIME_read_PKCS7(3)

NAME

SMIME_read_PKCS7 - parse S/IMIME message.
SYNOPSIS

PKCS7*SMIME_read PKCS7IO *in, BIO **bcont);
DESCRIPTION

SMIME_read_PKCS7()arses a message in S/IMIME format.
in is aBIO to read the message from.

If cleartext signing is used then the content is saved in a memory bio which is writtmoi, other-
wise*bcont is set toNULL .

The parsed PKCS#7 structure is returnediL if an error occurred.

NOTES
If *bcont is notNULL then the message is clear text sigriedont can then be passedR&KCS7_ver-
ify() with thePKCS7_DETACHED flag set.

Otherwise the type of the returned structure can be determined”RISBE7_type().
To support future functionality ibcontis notNULL *bcont should be initialized tolULL . For exam-
ple:
BIO *cont = NULL;
PKCS7 *p7;
p7 = SMIME_read_PKCS7(in, &cont);
BUGS

The MIME parser used b$MIME_read_PKCS7(s somewhat primitive. While it will handle most
S/MIME messages more complex compound formats may not work.

The parser assumes that #€CS7 structure is always base64 encoded and will not handle the case
where it is in binary format or uses quoted printable format.

The use of a memomI0 to hold the signed content limits the size of message which can be processed
due to memory restraints: a streaming single pass option should be available.

RETURN VALUES
SMIME_read PKCS7(feturns a validPKCS7 structure oiNULL is an error occurred. The error can be
obtained fromERR_get_erro(3).

SEE ALSO
ERR_get_erro(3), PKCS7_typ¢3) SMIME_read PKCS{@B), PKCS7_sigif3), PKCS7_verify3),
PKCS7_encrya8) PKCS7_decrya3)

HISTORY
SMIME_read PKCS7{yas added to OpenSSL 0.9.5

292 2002-10-09 0.9.7c

SMIME_write_ PKCS7(3) OpenSSL SMIME_write_ PKCS7(3)

NAME
SMIME_write_ PKCS7 - convert PKCS#7 structure to S/IMIME format.

SYNOPSIS
int SMIME_write_ PKCS7810 *out, PKCS7*p7, BIO *data, int flags);

DESCRIPTION
SMIME_write_ PKCS7(adds the appropriat!IME headers to a PKCS#7 structure to produce an
S/MIME message.

out is theBIO to write the data tgp7 is the appropriatPKCS7 structure. If cleartext signingnulti-
part/signed) is being used then the signed data must be supplied matheargumentflagsis an
optional set of flags.

NOTES
The following flags can be passed in flaggsparameter.

If PKCS7_DETACHED is set then cleartext signing will be used, this option only makes sense for
signedData whereKCS7_DETACHED is also set wheRKCS7_sign()s also called.

If the PKCS7_TEXT flag is setMIME headers for typéext/plain are added to the content, this only
makes sense HKCS7_DETACHED is also set.

If cleartext signing is being used then the data must be read twice: once to compute the signature in
PKCS7_sign(and once to output the S/IMIME message.

BUGS
SMIME_write_ PKCS7(always base64 encodes PKCS#7 structures, there should be an option to dis-
able this.

There should really be a way to produce cleartext signing using only a single pass of the data.

RETURN VALUES
SMIME_write_ PKCS7()eturns 1 for success or O for failure.

SEE ALSO
ERR_get_erro(3), PKCS7_sigii3), PKCS7_verify3), PKCS7_encryd8) PKCS7_decryaB)

HISTORY
SMIME_write_ PKCS7(vas added to OpenSSL 0.9.5

0.9.7c 2002-10-19 293

SSL_accept(3) OpenSSL SSL_accept(3)

NAME
SSL_accept — wait for a TLS/SSL client to initiate a TLS/SSL handshake

SYNOPSIS
#include <openssl/ssl.h>

int SSL_accept(SSL *ssl);

DESCRIPTION
SSL_accept(vaits for aTLS/SSLclient to initiate theTLS/SSLhandshake. The communication chan-
nel must already have been set and assigned sl setting an underlyinglO.

NOTES
The behaviour 08SL_accept@epends on the underlyimgo.

If the underlyingBIO is blocking, SSL_accept(vill only return once the handshake has been finished
or an error occurred, except f8GC (Server Gated Cryptography). FBGC SSL_accept(nay return
with =1, butSSL_get_error(Wwill yield SSL_ERROR_WANT_READ/WRITE andSSL_accept(3hould

be called again.

If the underlyingBIO is non-blocking, SSL_accept(yvill also return when the underlyirgiO could

not satisfy the needs &SL_accept(o continue the handshake, indicating the problem by the return
value -1. In this case a call ®SL_get error(with the return value oSSL_accept(will yield
SSL_ERROR_WANT_READ or SSL_ERROR_WANT_WRITE. The calling process then must repeat the
call after taking appropriate action to satisfy the needSSif accept() The action depends on the
underlyingBIO. When using a non-blocking socket, nothing is to be donesddett()can be used to
check for the required condition. When using a buffeBi@ like aBIO pair, data must be written into

or retrieved out of thel0 before being able to continue.

RETURN VALUES
The following return values can occur:

1 TheTLS/SSLhandshake was successfully completed, &SSLconnection has been established.

 TheTLS/SSLhandshake was not successful but was shut down controlled and by the specifications
of theTLS/SSLprotocol. CallSSL_get_error(vith the return valueet to find out the reason.

<0 TheTLS/SSL handshake was not successful because a fatal error occurred either at the protocol
level or a connection failure occurred. The shutdown was not clean. It can also occur of action is
need to continue the operation for non-blocking BlOs. 88IL_get_error(ith the return value
ret to find out the reason.

SEE ALSO
SSL_get_errof3), SSL_connegB), SSL_shutdow(8), ssl(3), bio(3), SSL_set connect st#8),
SSL_do_handshak®), SSL_CTX_ney{B)

294 2003-06-03 0.9.7c

SSL_alert_type_string(3) OpenSSL SSL_alert_type_string(3)

NAME
SSL_alert_type_string, SSL_alert_type_string_long, SSL_alert_desc_string,
SSL_alert_desc_string_long — get textual description of alert information

SYNOPSIS

#include <openssl/ssl.h>

const char *SSL_alert_type_string(int value);
const char *SSL_alert_type_string_long(int value);

const char *SSL_alert_desc_string(int value);
const char *SSL_alert_desc_string_long(int value);

DESCRIPTION
SSL_alert_type_string(gturns a one letter string indicating the type of the alert specifiedlbs.

SSL_alert_type_string_long@turns a string indicating the type of the alert specifiedalye.

SSL_alert_desc_string(eturns a two letter string as a short form describing the reason of the alert
specified byalue.

SSL_alert_desc_string_long@turns a string describing the reason of the alert specified|bsy.

NOTES
When one side of aBSL/TLS communication wants to inform the peer about a special situation, it
sends an alert. The alert is sent as a special message and does not influence the normal data stream
(unless its contents results in the communication being canceled).

A warning alert is sent, when a non-fatal error condition occurs. The “close notify” alert is sent as a
warning alert. Other examples for non-fatal errors are certificate errors (“certificate expired”, “unsup-
ported certificate”), for which a warning alert may be sent. (The sending party may however decide to
send a fatal error.) The receiving side may cancel the connection on reception of a warning alert on it

discretion.

Several alert messages must be sent as fatal alert messages as specifigibRE@® A fatal alert
always leads to a connection abort.

RETURN VALUES
The following strings can occur f&SL_alert_type_string@r SSL_alert_type_string_long()
“W"/[*warning”
“F"[“fatal”
“U”/*unknown”

This indicates that no support is available for this alert type. Prolvahlg does not contain a
correct alert message.

The following strings can occur f&SL_alert_desc_string@y SSL_alert_desc_string_long()

“ CN"/“close notify”
The connection shall be closed. This is a warning alert.

“ UM"[“unexpected message”
An inappropriate message was received. This alert is always fatal and should never be observed in
communication between proper implementations.

“BM"/“bad record mac”
This alert is returned if a record is received with an incovact. This message is always fatal.

“ DF"/“decompression failure”
The decompression function received improper input (e.g. data that would expand to excessive
length). This message is always fatal.

“ HF"/“handshake failure”
Reception of a handshake_failure alert message indicates that the sender was unable to negotiate
an acceptable set of security parameters given the options available. This is a fatal error.

“NC"/“no certificate”
A client, that was asked to send a certificate, does not send a certificate (SSLv3 only).

0.9.7c 2001-09-07 295

SSL_alert_type_string(3) OpenSSL SSL_alert_type_string(3)

“BC" /“bad certificate”
A certificate was corrupt, contained signatures that did not verify correctly, etc

“UC"/“unsupported certificate”
A certificate was of an unsupported type.

“ CR'/"certificate revoked”
A certificate was revoked by its signer.

“ CE'/“certificate expired”
A certificate has expired or is not currently valid.

“ cU"/“certificate unknown”
Some other (unspecified) issue arose in processing the certificate, rendering it unacceptable.

“1P"/“illegal parameter”
A field in the handshake was out of range or inconsistent with other fields. This is always fatal.

“ DC"/“decryption failed”
A TLSCiphertext decrypted in an invalid way: either it wasn’t an even multiple of the block length
or its padding values, when checked, weren't correct. This message is always fatal.

“ RO’/“record overflow”
A TLSCiphertext record was received which had a length more than 2°14+2048 bytes, or a record
decrypted to a TLSCompressed record with more than 2°14+1024 bytes. This message is always
fatal.

“ CA"[*unknown CA”
A valid certificate chain or partial chain was received, but the certificate was not accepted because
the CA certificate could not be located or couldn’t be matched with a known, tr@gted his
message is always fatal.

“ AD"[*access denied”
A valid certificate was received, but when access control was applied, the sender decided not to
proceed with negotiation. This message is always fatal.

“ DE"/“decode error”
A message could not be decoded because some field was out of the specified range or the length of
the message was incorrect. This message is always fatal.

“ CY"/[“decrypt error”
A handshake cryptographic operation failed, including being unable to correctly verify a signature,
decrypt a key exchange, or validate a finished message.

“ ER"/“export restriction”
A negotiation not in compliance with export restrictions was detected; for example, attempting to
transfer a 1024 bit ephemeR$A key for theRSA_EXPORThandshake method. This message is
always fatal.

“ PV"/“protocol version”
The protocol version the client has attempted to negotiate is recognized, but not supported. (For
example, old protocol versions might be avoided for security reasons). This message is always
fatal.

“1S"/“insufficient security”
Returned instead of handshake_failure when a negotiation has failed specifically because the
server requires ciphers more secure than those supported by the client. This message is always
fatal.

“1E"/“internal error”
An internal error unrelated to the peer or the correctness of the protocol makes it impossible to
continue (such as a memory allocation failure). This message is always fatal.

“US’/“user canceled”
This handshake is being canceled for some reason unrelated to a protocol failure. If the user can-
cels an operation after the handshake is complete, just closing the connection by sending a
close_notify is more appropriate. This alert should be followed by a close_notify. This message is
generally a warning.

296 2001-09-07 0.9.7c

SSL_alert_type_string(3) OpenSSL SSL_alert_type_string(3)

“NR” /“no renegotiation”
Sent by the client in response to a hello request or by the server in response to a client hello after
initial handshaking. Either of these would normally lead to renegotiation; when that is not appro-
priate, the recipient should respond with this alert; at that point, the original requester can decide
whether to proceed with the connection. One case where this would be appropriate would be
where a server has spawned a process to satisfy a request; the process might receive security
parameters (key length, authentication, etc.) at startup and it might be difficult to communicate
changes to these parameters after that point. This message is always a warning.

“ UK"/“unknown”
This indicates that no description is available for this alert type. Protallg does not contain a
correct alert message.

SEE ALSO
ssl(3), SSL_CTX_set_info_callbat®

0.9.7c 2001-09-07 297

SSL_CIPHER_get _name(3) OpenSSL SSL_CIPHER_get_name(3)

NAME

SSL_CIPHER_get _name, SSL_CIPHER_get bits, SSL_CIPHER_get version,
SSL_CIPHER_description — get SSL_CIPHER properties

SYNOPSIS

#include <openssl/ssl.h>

const char *SSL_CIPHER_get_name(SSL_CIPHER *cipher);

int SSL_CIPHER_get_bits(SSL_CIPHER *cipher, int *alg_bits);

char *SSL_CIPHER_get_version(SSL_CIPHER *cipher);

char *SSL_CIPHER_description(SSL_CIPHER *cipher, char *buf, int size);

DESCRIPTION

SSL_CIPHER_get _namegturns a pointer to the nameaipher. If the argument is theULL pointer,
a pointer to the constant valuBlONE" is returned.

SSL_CIPHER_get_bits(®turns the number of secret bits usedcipher. If alg_bitsis notNULL, it
contains the number of bits processed by the chosen algoritbiphdfr is NULL, O is returned.

SSL_CIPHER_get version@turns the protocol version foipher, currently “SSLv2”, “SSLv3", or
“TLSv1". If cipheris NULL, “(NONE)” is returned.

SSL_CIPHER_description(gturns a textual description of the cipher used into the Huififeof length

len provided.len must be at least 128 bytes, otherwise a pointer to the the string “Buffer too small” is
returned. Ifbuf is NULL, a buffer of 128 bytes is allocated usi@fENSSL_malloc()f the allocation

fails, a pointer to the string “OPENSSL_malloc Error” is returned.

NOTES

The number of bits processed can be different from the secret bits. An export cipher like e.g.
EXP-RC4-MD5has only 40 secret bits. The algorithm does use the full 128 bits (which would be
returned foralg_bits), of which however 88bits are fixed. The search space is hence only 40 bits.

The string returned b8SL_CIPHER_descriptionif) case of success consists of cleartext information
separated by one or more blanks in the following sequence:

<ciphername>
Textual representation of the cipher name.

<protocol version>
Protocol versionSSLv2,SSLv3. The TLSv1 ciphers are flagged with SSLv3.

Kx=<key exchange>
Key exchange metho®RSA (for export ciphers af®SA(512) or RSA(1024)), DH (for export
ciphers a®H(512) or DH(1024)),DH/RSA, DH/DSS, Fortezza.

Au=<authentication>
Authentication methodRSA, DSS DH, None. None is the representation of anonymous ciphers.

Enc=<symmetric encryption method>
Encryption method with number of secret bid&€S(40), DES(56), 3DES(168) RC4(40), RC4(56),
RC4(64),RC4(128),RC2(40),RC2(56), RC2(128), IDEA (128),Fortezza,None

Mac=<message authentication code>
Message digeskD5, SHAL.

<export flag>
If the cipher is flagged exportable with respect tousiccrypto regulations, the wordXport" is
printed.

EXAMPLES

298

Some examples for the output®6L_CIPHER_description()
EDH-RSA-DES-CBC3-SHA SSLv3 Kx=DH Au=RSA Enc=3DES(168) Mac=SHA1
EDH-DSS-DES-CBC3-SHA SSLv3 Kx=DH Au=DSS Enc=3DES(168) Mac=SHA1
RC4-MD5 SSLv3 Kx=RSA Au=RSA Enc=RC4(128) Mac=MD5
EXP-RC4-MD5 SSLv3 Kx=RSA(512) Au=RSA Enc=RC4(40) Mac=MD5 export

2001-02-16 0.9.7c

SSL_CIPHER_get _name(3) OpenSSL SSL_CIPHER_get_name(3)

BUGS
If SSL_CIPHER_descriptioni§ called withcipher beingNULL, the library crashes.

If SSL_CIPHER _descriptionfannot handle a built-in cipher, the according description of the cipher
property isunknown. This case should not occur.

RETURN VALUES
SeeDESCRIPTION

SEE ALSO
ssl(3), SSL_get_current_ciph€3), SSL_get_ciphe(8), ciphers(1)

0.9.7c 2001-02-16 299

SSL_clear(3) OpenSSL SSL_clear(3)

NAME
SSL_clear - reset SSL object to allow another connection

SYNOPSIS
#include <openssl/ssl.h>

int SSL_clear(SSL *ssl);

DESCRIPTION
Resetsslto allow another connection. All settings (method, ciphers, BIOs) are kept.

NOTES
SSL_clear is used to prepare S8L object for a new connection. While all settings are kept, a side
effect is the handling of the curre®sL session. If a session is stilpen, it is considered bad and will
be removed from the session cache, as requir&Fbp246 A session is considered openSHL_shut-
down(3) was not called for the connection or at [e8S1L_set shutdowB) was used to set the
SSL_SENT_SHUTDOWNstate.

If a session was closed cleanly, the session object will be kept and all settings corresponding. This
explicitly means, that e.g. the special method used during the session will be kept for the next hand-
shake. So if the session was a TLSv1 sessi@sLalient object will use a TLSv1 client method for

the next handshake andssL server object will use a TLSv1 server method, even if SSLv23 * meth-
ods were chosen on startup. This will might lead to connection failureS &eaew3)) for a descrip-

tion of the method’s properties.

WARNINGS
SSL_clear(resets thesSL object to allow for another connection. The reset operation however keeps
several settings of the last sessions (some of these settings were made automatically during the last
handshake). It only makes sense when opening a new session (or reusing an old one) with the same
peer that shares these settingdSL_clear()is not a short form for the sequen&SL_fred3);
SSL_nev\d); .

RETURN VALUES
The following return values can occur:

 TheSSL_clear(pperation could not be performed. Check the error stack to find out the reason.
1 TheSSL_clear(pperation was successful.

SSL_newW3), SSL_fre€3), SSL_shutdowfB), SSL_set shutdow®), SSL_CTX_set_optio3), ssl(3),
SSL_CTX set _client_cert ()

300 2002-02-27 0.9.7c

SSL_COMP_add_compression_method(3) OpenSSL SSL_COMP_add_compression_method(3)

NAME
SSL_COMP_add_compression_method — handle SSL/TLS integrated compression methods

SYNOPSIS
#include <openssl/ssl.h>

int SSL_COMP_add_compression_method(int id, COMP_METHOD *cm));

DESCRIPTION
SSL_COMP_add_compression_methadigds the compression metho with the identifierid to the
list of available compression methods. This list is globally maintained feésalbperations within this
application. It cannot be set for speci#isL_CTXor SSLobjects.

NOTES
The TLS standard (or SSLv3) allows the integration of compression methods into the communication.
The TLS RFC does however not specify compression methods or their corresponding identifiers, so
there is currently no compatible way to integrate compression with unknown peers. It is therefore cur-
rently not recommended to integrate compression into applications. Applications for non-public use
may agree on certain compression methods. Using different compression methods with the same identi-
fier will lead to connection failure.

An OpenSSL client speaking a protocol that allows compression (SSLv3, TLSv1) will unconditionally
send the list of all compression methods enabled 88h COMP_add_compression_methad@®he

server during the handshake. Unlike the mechanisms to set a cipher list, there is no method available to
restrict the list of compression method on a per connection basis.

An OpenSSL server will match the identifiers listed by a client against its own compression methods
and will unconditionally activate compression when a matching identifier is found. There is no way to
restrict the list of compression methods supported on a per connection basis.

The OpenSSL library has the compression meti@iadP_rle() and (when especially enabled during
compilation)COMP_2ib() available.

WARNINGS
Once the identities of the compression methods foritiseprotocol have been standardized, the com-
pressiomPI will most likely be changed. Using it in the current state is not recommended.

RETURN VALUES
SSL_COMP_add_compression_methaoddy return the following values:

1 The operation succeeded.
» The operation failed. Check the error queue to find out the reason.

SEE ALSO
ssl(3)

0.9.7c 2001-08-23 301

SSL_connect(3) OpenSSL SSL_connect(3)

NAME
SSL_connect - initiate the TLS/SSL handshake with an TLS/SSL server

SYNOPSIS
#include <openssl/ssl.h>

int SSL_connect(SSL *ssl);

DESCRIPTION
SSL_connect(pitiates theTLS/SSLhandshake with a server. The communication channel must already
have been set and assigned tosi$iby setting an underlyinglO.

NOTES
The behaviour 08SL_connect@epends on the underlyimgO.

If the underlyingBIO is blocking, SSL_connectyill only return once the handshake has been finished
or an error occurred.

If the underlyingBIO is non-blocking, SSL_connectyill also return when the underlyirgjO could

not satisfy the needs &SL_connectfp continue the handshake, indicating the problem by the return
value —1. In this case a call ®SL_get error(with the return value oSSL_connect(yill yield
SSL_ERROR_WANT_READ or SSL_ERROR_WANT_WRITE. The calling process then must repeat the
call after taking appropriate action to satisfy the need8Sif connect(). The action depends on the
underlyingBIO. When using a non-blocking socket, nothing is to be donesddett()can be used to
check for the required condition. When using a buffeBi@ like aBIO pair, data must be written into

or retrieved out of thel0 before being able to continue.

RETURN VALUES
The following return values can occur:

1 TheTLS/SSLhandshake was successfully completed, &SSLconnection has been established.

 TheTLS/SSLhandshake was not successful but was shut down controlled and by the specifications
of theTLS/SSLprotocol. CallSSL_get_error(Jvith the return valueet to find out the reason.

<0 TheTLS/SSLhandshake was not successful, because a fatal error occurred either at the protocol
level or a connection failure occurred. The shutdown was not clean. It can also occur of action is
need to continue the operation for non-blocking BlOs. 88IL_get_error(ith the return value
ret to find out the reason.

SEE ALSO
SSL_get_errof3), SSL_accefB), SSL_shutdowf8), ssl(3), bio(3), SSL_set_connect_st&8,
SSL_do_handshak®), SSL_CTX_ney{B)

302 2003-06-03 0.9.7c

SSL_CTX add_extra_chain_cert(3) OpenSSL SSL_CTX add_extra_chain_cert(3)

NAME
SSL_CTX add_extra_chain_cert — add certificate to chain

SYNOPSIS
#include <openssl/ssl.h>

long SSL_CTX add_extra_chain_cert(SSL_CTX ctx, X509 *x509)

DESCRIPTION
SSL_CTX add_extra_chain_ceradds the certificate509 to the certificate chain presented together
with the certificate. Several certificates can be added one after the other.

NOTES
When constructing the certificate chain, the chain will be formed from these certificates explicitly spec-
ified. If no chain is specified, the library will try to complete the chain from the avaifabkertifi-
cates in the truste@A storage, seB8SL_CTX_load_verify locatio(®).

RETURN VALUES
SSL_CTX add_extra_chain_cent§furns 1 on success. Check out the error stack to find out the reason
for failure otherwise.

SEE ALSO

ssl(3), SSL_CTX_use_certificg®), SSL_CTX_set_client_cert (3), SSL_CTX_load_verify_loca-
tions(3)

0.9.7c 2002-02-15 303

SSL_CTX_ add_session(3) OpenSSL SSL_CTX_add_session(3)

NAME

SSL_CTX add_session, SSL_add session, SSL_CTX remove_session, SSL remove_session -
manipulate session cache

SYNOPSIS
#include <openssl/ssl.h>

int SSL_CTX _add_session(SSL_CTX *ctx, SSL_SESSION *c);
int SSL_add_session(SSL_CTX *ctx, SSL_SESSION *c);

int SSL_CTX_remove_session(SSL_CTX *ctx, SSL_SESSION *c);
int SSL_remove_session(SSL_CTX *ctx, SSL_SESSION *c);

DESCRIPTION
SSL_CTX add_sessiordilds the sessionto the contexictx. The reference count for sessions

incremented by 1. If a session with the same session id already exists, the old session is removed by
calling SSL_SESSION_fr€®).

SSL_CTX remove_sessiondmoves the sessiom from the contextctx. SSL_SESSION_fré®) is
called once foc.

SSL_add_sessiorghdSSL_remove_sessiomfe synonyms for their SSL_CTX_*() counterparts.

NOTES
When adding a new session to the internal session cache, it is examined whether a session with the
same session id alreadyi#s. In this case it is assumed that both sessions are identical. If the same
session is stored in a differeBSL_SESSIONobject, The old session is removed and replaced by the
new session. If the session is actually identical (tB8L SESSION object is identical),
SSL_CTX add_sessioig)a no—op, and the return value is 0.

If a serverSSL_CTXis configured with theSSL_SESS_CACHE_NO_INTERNAL_STORfEag then the

internal cache will not be populated automatically by new sessions negotiated 38LtheS imple-
mentation, even though the internal cache will be searched automatically for session-resume requests
(the latter can be surpressed $§L._SESS CACHE_NO_INTERNAL_LOOKUPSo the application can

use SSL_CTX_ add_sessiomfjrectly to have full control over the sessions that can be resumed if
desired.

RETURN VALUES
The following values are returned by all functions:

The operation failed. In case of the add operation, it was tried to add
the same (identical) session twice. In case of the remove operation, the
session was not found in the cache.

The operation succeeded.

SEE ALSO
ssl(3), SSL_CTX_ set_session_cache_n{8lle&SSL_SESSION_frég)

304 2002-10-29 0.9.7c

SSL_CTX_ctrl(3) OpenSSL SSL_CTX ctrl(3)

NAME
SSL_CTX ctrl, SSL_CTX_callback _ctrl, SSL_ctrl, SSL_callback_ctrl — internal handling functions
for SSL_CTX and SSL objects

SYNOPSIS
#include <openssl/ssl.h>

long SSL_CTX_ctrl(SSL_CTX *ctx, int cmd, long larg, void *parg);
long SSL_CTX_callback_ctrl(SSL_CTX *, int cmd, void (*fp)());
long SSL_ctrl(SSL *ssl, int cmd, long larg, void *parg);
long SSL_callback_ctrl(SSL *, int cmd, void (*fp)());
DESCRIPTION
The SSL_* ctrl() family of functions is used to manipulate settings of$8&_CTXandSSL objects.

Depending on the commachd the argumentkarg, parg, or fp are evaluated. These functions should
never be called directly. All functionalities needed are made available via other functions or macros.

RETURN VALUES
The return values of the SSLétrl() functions depend on the command supplied viacthd parame-
ter.

SEE ALSO
ssl(3)

0.9.7c 2001-10-20 305

SSL_CTX flush_sessions(3) OpenSSL SSL_CTX flush_sessions(3)

NAME
SSL_CTX flush_sessions, SSL_flush_sessions — remove expired sessions

SYNOPSIS
#include <openssl/ssl.h>

void SSL_CTX flush_sessions(SSL_CTX *ctx, long tm);
void SSL_flush_sessions(SSL_CTX *ctx, long tm);

DESCRIPTION
SSL_CTX flush_sessions§uses a run through the session caclaxab remove sessions expired at
timetm.
SSL_flush_sessiongg)a synonym fo6SL_CTX_flush_sessions()

NOTES

If enabled, the internal session cache will collect all sessions established up to the specified maximum
number (see&SSL_CTX_sess_set _cache_size()). As sessions will not be reused ones they are expired,
they should be removed from the cache to save resources. This can either be done

automatically whenever 255 new sessions were established &8& CTX set ses-
sion_cache_mod@8)) or manually by callin@gSL_CTX_flush_sessions()

The parametetm specifies the time which should be used for the expiration test, in most cases the
actual time given byime(0) will be used.

SSL_CTX flush_sessions(ll only check sessions stored in the internal cache. When a session is
found and removed, the remove_session_cb is however called to synchronize with the external cache
(seeSSL_CTX_sess_set_get(®).

RETURN VALUES

SEE ALSO
ssl(3), SSL_CTX_set_session_cache_n{djle SSL_CTX_ set_timeq(®),
SSL_CTX sess_set_get(gp

306 2001-02-04 0.9.7c

SSL_CTX free(3) OpenSSL SSL_CTX free(3)

NAME
SSL_CTX free - free an allocated SSL_CTX object

SYNOPSIS
#include <openssl/ssl.h>

void SSL_CTX free(SSL_CTX *ctx);

DESCRIPTION
SSL_CTX free@ecrements the reference countbf, and removes th8SL_CTXobject pointed to by
ctx and frees up the allocated memory if the the reference count has reached 0.

It also calls thdree()ing procedures for indirectly affected items, if applicable: the session cache, the
list of ciphers, the list of Client CAs, the certificates and keys.

WARNINGS
If a session-remove callback is set (SSL_CTX_sess_set_removahibQallback will be called for
each session being freed framx's session cache. This implies, that all corresponding sessions from an
external session cache are removed as well. If this is not desired, the user should explicitly unset the
callback by calling SSL_CTX_sess_set_removectgbNULL) prior to callingSSL_CTX_free().

RETURN VALUES
SSL_CTX free@oes not provide diagnostic information.

SEE ALSO
SSL_CTX _ne(3),ssl(3), SSL_CTX sess_set_get(gh

0.9.7c 2003-03-27 307

SSL_CTX get_ex_new_index(3) OpenSSL SSL_CTX get_ex_new_index(3)

NAME
SSL_CTX get ex new_index, SSL_CTX_set _ex_data, SSL_CTX_get ex_data - internal application
specific data functions

SYNOPSIS
#include <openssl/ssl.h>

int SSL_CTX get_ex_new_index(long argl, void *argp,
CRYPTO_EX_ new *new_func,
CRYPTO_EX_ dup *dup_func,
CRYPTO_EX free *free_func);

int SSL_CTX_set_ex_data(SSL_CTX *ctx, int idx, void *arg);

void *SSL_CTX_get_ex_data(SSL_CTX *ctx, int idx);

typedef int new_func(void *parent, void *ptr, CRYPTO_EX_ DATA *ad,
int idx, long argl, void *argp);

typedef void free_func(void *parent, void *ptr, CRYPTO_EX_DATA *ad,
int idx, long argl, void *argp);

typedef int dup_func(CRYPTO_EX_ DATA *to, CRYPTO_EX_DATA *from, void *from_d,
int idx, long argl, void *argp);

DESCRIPTION
Several OpenSSL structures can have application specific data attached to them. These functions are
used internally by OpenSSL to manipulate application specific data attached to a specific structure.

SSL_CTX get_ex_new_indes(used to register a new index for application specific data.
SSL_CTX set_ex_datag)used to store application dataagd for idx into thectx object.
SSL_CTX get_ex_datag)used to retrieve the information fidix from ctx.

A detailed description for the* get ex new index() functionality can be found in
RSA_get ex new_ind@). The* get ex data() and*_set ex data() functionality is described in
CRYPTO_set_ex_dad).

SEE ALSO
ssl(3), RSA _get_ex_new_ind@®), CRYPTO_set ex dafd)

308 2001-05-14 0.9.7c

SSL_CTX_get verify_mode(3) OpenSSL SSL_CTX_get verify_mode(3)

NAME
SSL_CTX get verify mode, SSL get verify mode, SSL CTX get verify depth, SSL get ver-
ify_depth, SSL_get verify_callback, SSL_CTX_ get verify callback — get currently set verification
parameters

SYNOPSIS
#include <openssl/ssl.h>

int SSL_CTX_get_ verify_mode(SSL_CTX *ctx);

int SSL_get_verify_mode(SSL *ssl);

int SSL_CTX_ get verify_depth(SSL_CTX *ctx);

int SSL_get verify _depth(SSL *ssl);

int (*SSL_CTX_get_verify_callback(SSL_CTX *ctx))(int, X509 _STORE_CTX *);
int (*SSL_get_verify _callback(SSL *ssl))(int, X509 _STORE_CTX *);

DESCRIPTION
SSL_CTX get verify_mode€turns the verification mode currently setir.

SSL_get verify_mode@turns the verification mode currently seséh

SSL_CTX get verify_depthi@turns the verification depth limit currently setdtx. If no limit has
been explicitly set, -1 is returned and the default value will be used.

SSL_get verify_depth(gturns the verification depth limit currently setssl. If no limit has been
explicitly set, —1 is returned and the default value will be used.

SSL_CTX get verify_callback@turns a function pointer to the verification callback currently set in
ctx. If no callback was explicitly set, théULL pointer is returned and the default callback will be used.

SSL_get_verify_callback(gturns a function pointer to the verification callback currently seslinf
no callback was explicitly set, tiNJLL pointer is returned and the default callback will be used.

RETURN VALUES
SeeDESCRIPTION

SEE ALSO
ssl(3), SSL_CTX_set_verif@)

0.9.7c 2000-10-12 309

SSL_CTX load_verify_locations(3) OpenSSL SSL_CTX load_verify_locations(3)

NAME
SSL_CTX load_verify_locations — set default locations for trusted CA certificates

SYNOPSIS
#include <openssl/ssl.h>

int SSL_CTX load_verify_locations(SSL_CTX *ctx, const char *CAfile,
const char *CApath);

DESCRIPTION
SSL_CTX load_verify locationpecifies the locations fatx, at whichCA certificates for verifica-
tion purposes are located. The certificates availabl€Afde andCApath are trusted.

NOTES
If CAfile is notNULL, it points to a file ofCA certificates inrPEM format. The file can contain several
CA certificates identified by

sequences. Before, between, and after the certificates text is allowed which can be used e.g. for descrip-

tions of the certificates.
The CAfile is processed on execution of tB8L_CTX_load_verify locationg(nction.

If CApath is notNULL, it points to a directory containingA certificates irPEM format. The files each
contain oneCA certificate. The files are looked up by thAa subject name hash value, which must
hence be available. If more than atwe certificate with the same name hash value exist, the extension

must be different (e.g. 9d66eef0.0, 9d66eef0.1 etc). The search is performed in the ordering of the

extension number, regardless of other properties of the certificates. Useadhashutility to create
the necessary links.

The certificates itCApath are only looked up when required, e.g. when building the certificate chain
or when actually performing the verification of a peer certificate.

When looking upCA certificates, the OpenSSL library will first search the certificat€Aifile, then
those inCApath. Certificate matching is done based on the subject name, the key identifier (if present),

and the serial number as taken from the certificate to be verified. If these data do not match, the next

certificate will be tried. If a first certificate matching the parameters is found, the verification process
will be performed; no other certificates for the same parameters will be searched in case of failure.

In server mode, when requesting a client certificate, the server must send the list of CAs of which it

will accept client certificates. This list is not influenced by the conter@\éife or CApath and must
explicitly be set using th8SL_CTX_set_client CA_I{8) family of functions.

When building its own certificate chain, an OpenSSL client/server will try to fill in missing certificates
from CAfile/CApath, if the certificate chain was not explicitly specified (see
SSL_CTX add_extra_chain_c}, SSL_CTX_ use_certifica(@).

WARNINGS
If severalCA certificates matching the name, key identifier, and serial number condition are available,
only the first one will be examined. This may lead to unexpected results if theCgaoeetificate is
available with different expiration dates. If a “certificate expired” verification error occurs, no other
certificate will be searched. Make sure to not have expired certificates mixed with valid ones.

EXAMPLES
Generate &A certificate file with descriptive text from tlga certificates cal.pem ca2.pem ca3.pem:

#!/bin/sh

rm CAfile.pem

foriin cal.pem ca2.pem ca3.pem ; do
openssl x509 -in $i -text >> CAfile.pem

done

Prepare the directory /some/where/certs containing sevaregrtificates for use aApath:

310 2001-09-07 0.9.7c

SSL_CTX load_verify_locations(3) OpenSSL SSL_CTX load_verify_locations(3)

cd /some/where/certs
c_rehash .

RETURN VALUES
The following return values can occur:

» The operation failed becau§file and CApath areNULL or the processing at one of the loca-
tions specified failed. Check the error stack to find out the reason.

1 The operation succeeded.

SEE ALSO
ssl(3), SSL_CTX_set_client_CA_I{8), SSL_get client_CA_lig8), SSL_CTX_use_certifica®),
SSL_CTX add_extra_chain_c8}, SSL_CTX_set_cert_stq®

0.9.7c 2001-09-07 311

SSL_CTX_new(3) OpenSSL SSL_CTX_new(3)

NAME
SSL_CTX new - create a new SSL_CTX object as framework for TLS/SSL enabled functions

SYNOPSIS
#include <openssl/ssl.h>

SSL_CTX*SSL_CTX_new(SSL_METHOD *method);

DESCRIPTION
SSL_CTX new(reates a neSL_CTX object as framework to establigihS/SSL enabled connec-
tions.

NOTES
The SSL_CTX object usesnethod as connection method. The methods exist in a generic type (for
client and server use), a server only type, and a client onlyrhgtbod can be of the following types:

SSLv2_method(void), SSLv2_server_method(void), SSLv2_client_method(void)
A TLS/SSLconnection established with these methods will only understand the SSLv2 protocol. A
client will send out SSLv2 client hello messages and will also indicate that it only understand
SSLv2. A server will only understand SSLv2 client hello messages.

SSLv3_method(void), SSLv3_server_method(void), SSLv3_client_method(void)
A TLS/SSLconnection established with these methods will only understand the SSLv3 protocol. A
client will send out SSLv3 client hello messages and will indicate that it only understands SSLv3.
A server will only understand SSLv3 client hello messages. This especially means, that it will not
understand SSLv2 client hello messages which are widely used for compatibility reasons, see
SSLv23 * method()

TLSv1l _method(void), TLSv1l server_method(void), TLSv1l client_method(void)
A TLS/SSLconnection established with these methods will only understand the TLSv1 protocol. A
client will send out TLSv1 client hello messages and will indicate that it only understands TLSv1.
A server will only understand TLSv1 client hello messages. This especially means, that it will not
understand SSLv2 client hello messages which are widely used for compatibility reasons, see
SSLv23 * method(). It will also not understand SSLv3 client hello messages.

SSLv23 method(void), SSLv23 server_method(void), SSLv23_client_method(void)
A TLS/SSL connection established with these methods will understand the SSLv2, SSLv3, and
TLSv1 protocol. A client will send out SSLv2 client hello messages and will indicate that it also
understands SSLv3 and TLSv1. A server will understand SSLv2, SSLv3, and TLSv1 client hello
messages. This is the best choice when compatibility is a concern.

The list of protocols available can later be limited using the SSL OP_NO_SSLv2,
SSL_ OP_NO_SSLv3, SSL OP_NO_TLSvl options of th8SL CTX set options() or
SSL_set_options() functions. Using these options it is possible to chooseS&v23_server_method()

and be able to negotiate with all possible clients, but to only allow newer protocols like SSLv3 or
TLSv1.

SSL_CTX newfpitializes the list of ciphers, the session cache setting, the callbacks, the keys and cer-
tificates, and the options to its default values.

RETURN VALUES
The following return values can occur:

NULL
The creation of a ne®SL_CTXobject failed. Check the error stack to find out the reason.

Pointer to arsSL_CTXobject
The return value points to an allocatsl._CTXobject.

SEE ALSO
SSL_CTX fre€), SSL_accefB), ssl(3), SSL_set_connect_std8)

312 2001-07-25 0.9.7c

SSL_CTX_sess_number(3) OpenSSL SSL_CTX_sess_number(3)

NAME
SSL_CTX_sess_number, SSL_CTX_sess_connect, SSL_CTX_sess_connect_good,
SSL_CTX sess_connect_renegotiate, SSL_CTX_sess_accept, SSL_CTX sess_accept_good,
SSL_CTX_ sess_accept_renegotiate, SSL_CTX_ sess_hits, SSL_CTX_ sess_cb_hits,
SSL_CTX _sess_misses, SSL_CTX_sess_timeouts, SSL_CTX_sess_cache_full — obtain session cache
statistics

SYNOPSIS

#include <openssl/ssl.h>

long SSL_CTX_sess_number(SSL_CTX *ctx);

long SSL_CTX_sess_connect(SSL_CTX *ctx);

long SSL_CTX_sess_connect_good(SSL_CTX *ctx);

long SSL_CTX_sess_connect_renegotiate(SSL_CTX *ctx);
long SSL_CTX_ sess_accept(SSL_CTX *ctx);

long SSL_CTX_sess_accept_good(SSL_CTX *ctx);

long SSL_CTX_sess_accept_renegotiate(SSL_CTX *ctx);
long SSL_CTX_sess_hits(SSL_CTX *ctx);

long SSL_CTX_sess_cb_hits(SSL_CTX *ctx);

long SSL_CTX_sess_misses(SSL_CTX *ctx);

long SSL_CTX_sess_timeouts(SSL_CTX *ctx);

long SSL_CTX_ sess_cache_full(SSL_CTX *ctx);

DESCRIPTION
SSL_CTX_sess_numberjurns the current number of sessions in the internal session cache.

SSL_CTX_ sess_connecturns the number of starteé$L/TLShandshakes in client mode.

SSL_CTX sess_connect_goodifurns the number of successfully establisBstl/TLS sessions in
client mode.

SSL_CTX_sess_connect_renegotiaet()rns the number of start renegotiations in client mode.
SSL_CTX_ sess_accep#jurns the number of startédL/TLShandshakes in server mode.
SSL_CTX sess_accept_goodfjurns the number of successfully establisisstl/TLS sessions in
server mode.

SSL_CTX_sess_accept_renegotiatet{)rns the number of start renegotiations in server mode.

SSL_CTX_ sess_hitg@turns the number of successfully reused sessions. In client mode a session set
with SSL_set_sessi@8) successfully reused is counted as a hit. In server mode a session successfully
retrieved from internal or external cache is counted as a hit.

SSL_CTX sess_cb_hits€turns the number of successfully retrieved sessions from the external ses-
sion cache in server mode.

SSL_CTX sess_missesurns the number of sessions proposed by clients that were not found in the
internal session cache in server mode.

SSL_CTX sess_timeoutsgjurns the number of sessions proposed by clients and either found in the
internal or external session cache in server mode,

but that were invalid due to timeout. These sessions are not included 85Lthe&CTX_sess_hits()
count.

SSL_CTX sess_cache_fuli€turns the number of sessions that were removed because the maximum
session cache size was exceeded.

RETURN VALUES
The functions return the values indicated inMESCRIPTIONsection.

SEE ALSO
ssl(3), SSL_set_sessi@B), SSL_CTX_set_session_cache n{8l8SL_CTX_ sess_set cache_@je

0.9.7c 2001-02-16 313

SSL_CTX sess_set _cache_size(3) OpenSSL SSL_CTX sess_set_cache_size(3)

NAME

SSL_CTX sess_set_cache_size, SSL_CTX_sess_get _cache_size — manipulate session cache size

SYNOPSIS

#include <openssl/ssl.h>

long SSL_CTX_ sess_set _cache_size(SSL_CTX *ctx, long t);
long SSL_CTX_ sess_get_cache_size(SSL_CTX *ctx);

DESCRIPTION

SSL_CTX sess_set_cache_sige{3 the size of the internal session cache of cottbeta t.
SSL_CTX sess_get_cache_simt(rns the currently valid session cache size.

NOTES

The internal session cache siz&s®&._SESSION_CACHE_MAX_SIZE_DEFAULTcurrently 1024*20, so
that up to 20000 sessions can be held. This size can be modified using the
SSL_CTX sess_set _cache_sizalf) A special case is the size 0, which is used for unlimited size.

When the maximum number of sessions is reached, no more new sessions are added to the cache. New
space may be added by calli@§L_CTX_flush_sessidB3 to remove expired sessions.

If the size of the session cache is reduced and more sessions are already in the session cache, old ses-
sion will be removed at the next time a session shall be added. This removal is not synchronized with
the expiration of sessions.

RETURN VALUES

SSL_CTX sess_set_cache_simt()rns the previously valid size.
SSL_CTX sess_get_cache_simt(rns the currently valid size.

SEE ALSO

314

ssl(3), SSL_CTX_ set session_cache nf8ije SSL_CTX_ sess_numlfg@y, SSL_CTX flush_ses-
sions(3)

2002-07-10 0.9.7c

SSL_CTX sess_set_get ch(3) OpenSSL SSL_CTX sess_set_get cbh(3)

NAME
SSL_CTX sess_set _new_cb, SSL_CTX_ sess_set remove_cb, SSL_CTX sess_set_get cb,
SSL_CTX sess_get new _ch, SSL_CTX_sess_get remove_cb, SSL_CTX_sess_get get cb - provide
callback functions for server side external session caching

SYNOPSIS
#include <openssl/ssl.h>

void SSL_CTX_sess_set_new_ch(SSL_CTX *ctx,
int (*new_session_cbh)(SSL *, SSL_SESSION *));
void SSL_CTX_sess_set_remove_cb(SSL_CTX *ctx,
void (*remove_session_cb)(SSL_CTX *ctx, SSL_SESSION *));
void SSL_CTX_ sess_set_get ch(SSL_CTX *ctx,
SSL_SESSION (*get_session_ch)(SSL *, unsigned char *, int, int *));

int (*SSL_CTX_sess_get _new_ch(SSL_CTX *ctx))(struct ssl_st *ssl, SSL_SESSION *sess);
void (*SSL_CTX_sess_get_remove_ch(SSL_CTX *ctx))(struct ssl_ctx_st *ctx, SSL_SESSION *sess);
SSL_SESSION *(*SSL_CTX_sess_get_get_ch(SSL_CTX *ctx))(struct ssl_st *ssl, unsigned char *data, int ler

int (*new_session_cb)(struct ssl_st *ssl, SSL_SESSION *sess);

void (*remove_session_chb)(struct ssl_ctx_st *ctx, SSL_SESSION *sess);

SSL_SESSION *(*get_session_cb)(struct ssl_st *ssl, unsigned char *data,
int len, int *copy);

DESCRIPTION

SSL_CTX sess_set_new_d#is the callback function, which is automatically called whenever a new
session was negotiated.

SSL_CTX sess_set_remove_dlefs the callback function, which is automatically called whenever a
session is removed by tI8SL engine, because it is considered faulty or the session has become obso-
lete because of exceeding the timeout value.

SSL_CTX sess_set _get d#ds the callback function which is called, whenev@g&TLSclient pro-
posed to resume a session but the session could not be found in the internal session cache (see
SSL_CTX_ set_session_cache_n{8)e (SSL/TLSserver only.)

SSL_CTX sess_get new_¢b@SL _CTX sess_get remove_cbfnd SSL _CTX sess get get cb()
allow to retrieve the function pointers of the provided callback functions. If a callback function has not
been set, thRULL pointer is returned.

NOTES
In order to allow external session caching, synchronization with the internal session cache is realized
via callback functions. Inside these callback functions, session can be saved to disk or put into a data-
base using thd2i_SSL_SESSION) interface.

The new_session_cb{¥ called, whenever a new session has been negotiated and session caching is
enabled (se&SL_CTX set session_cache_n{8f)e Thenew_session_cb({} passed theslconnec-
tion and the ssl sessigess. If the callback returfsthe session will be immediately removed again.

Theremove_session_ch§ called, whenever theSLengine removes a session from the internal cache.

This happens when the session is removed because it is expired or when a connection was not shut-
down cleanly. It also happens for all sessions in the internal session cach&3thedTX_fred) is

called. Thaemove_session_chf passed thetx and the ssl sessi@ess. It does not provide any feed-

back.

Theget_session_cb{} only called orsSL/TLSservers with the session id proposed by the client. The
get_session_ch(p always called, also when session caching was disabledgéthsession_cb(s

passed theslconnection, the session id of lengghgth at the memory locatiodata. With the param-
etercopy the callback can require tI$SLengine to increment the reference count of3e SESSION

object, Normally the reference count is not incremented and therefore the session must not be explicitly
freed withSSL_SESSION_fr€®).

SEE ALSO
ssl(3), d2i_SSL_SESSIQR), SSL_CTX_set_session_cache_n{8ileSSL_CTX flush_sessidB},
SSL_SESSION_fré®), SSL_CTX_fres)

0.9.7c 2003-03-27 315

SSL_CTX_sessions(3) OpenSSL SSL_CTX_sessions(3)

NAME
SSL_CTX_sessions — access internal session cache

SYNOPSIS
#include <openssl/ssl.h>

struct lhash_st *SSL_CTX_sessions(SSL_CTX *ctx);

DESCRIPTION
SSL_CTX_ sessiong@turns a pointer to the Ihash databases containing the internal session cache for
Ctx.

NOTES
The sessions in the internal session cache are kepthash{3) type database. It is possible to directly
access this database e.g. for searching. In parallel, the sessions form a linked list which is maintained
separately from thihash(3) operations, so that the database must not be modified directly but by using
theSSL_CTX add_sessi(@) family of functions.

SEE ALSO
ssl(3), Ihash(3), SSL_CTX_add_sessi(8), SSL_CTX_set_session_cache_n{8jle

316 2001-02-16 0.9.7c

SSL_CTX_ set_cert_store(3) OpenSSL SSL_CTX_set_cert_store(3)

NAME
SSL_CTX set_cert_store, SSL_CTX_get_cert_store — manipulate X509 certificate verification storage

SYNOPSIS
#include <openssl/ssl.h>

void SSL_CTX_set_cert_store(SSL_CTX *ctx, X509 _STORE *store);
X509 STORE *SSL_CTX_get_cert_store(SSL_CTX *ctx);

DESCRIPTION
SSL_CTX set _cert_storegets/replaces the certificate verification storagectnfto/with store. If
another X509 STORE object is currently settix it will be X509 STORE_freefdl.

SSL_CTX get_cert_storefturns a pointer to the current certificate verification storage.

NOTES
In order to verify the certificates presented by the peer, tr@#tezkrtificates must be accessed. These
CA certificates are made available via lookup methods, handled inside the X509 STORE. From the
X509 STORE the X509 STORE_CTX used when verifying certificates is created.

Typically the trusted certificate store is handled indirectly via uS&d_CTX load_verify loca-
tions(3). Using theSSL_CTX_set cert_storefhd SSL_CTX_get_cert_stord()nctions it is possible
to manipulate the X509 STORE object beyond3B&_CTX load_verify locatio(®) call.

Currently no detailed documentation on how to use the X509 STORE object is available. Not all mem-
bers of the X509 SDIRE are used when the verification takes place. So will e.getiifg_callback()

be overridden with theerify _callback()set via theSSL_CTX_set_verif@) family of functions. This
document must therefore be updated when documentation about the X509 STORE object and its han-
dling becomes available.

RETURN VALUES
SSL_CTX set_cert_storeldes not return diagnostic output.

SSL_CTX get_cert_storefturns the current setting.

SEE ALSO
ssl(3), SSL_CTX load_verify locatio(), SSL_CTX_set_verif@)

0.9.7c 2002-06-04 317

SSL_CTX_set_cert_verify_callback(3) OpenSSL SSL_CTX_ set_cert_verify_callback(3)

NAME
SSL_CTX_ set_cert_verify_callback — set peer certificate verification procedure

SYNOPSIS
#include <openssl/ssl.h>

void SSL_CTX_set_cert_verify_callback(SSL_CTX *ctx, int (*callback)(X509_STORE_CTX *,void *), void *ar

DESCRIPTION
SSL_CTX set_cert_verify_callbackéts the verification callback function ftix. SSL objects that are
created fronttxinherit the setting valid at the time wh88L_new3) is called.

NOTES
Whenever a certificate is verified durings8L/TLS handshake, a verification function is called. If the
application does not explicitly specify a verification callback function, the built-in verification function
is used. If a verification callbacsallbackis specified viasSSL_CTX_set _cert_verify _callbackif)e
supplied callback function is called instead. By settiatjback to NULL, the default behaviour is
restored.

When the verification must be performedallback will be called with the arguments call-
back(X509 STORE_CTX *x509_store_ctx, void *arg). The argunaegis specified by the applica-
tion when settingallback

callback should return 1 to indicate verification success and O to indicate verification failure. If
SSL_VERIFY_PEERSs set anctallbackreturns 0, the handshake will fail. As the verification procedure
may allow to continue the connection in case of failure (by always returning 1) the verification result
must be set in any case using #reor member ofx509_store_ctso that the calling application will

be informed about the detailed result of the verification procedure!

Within x509_store_ctxcallbackhas access to therify _callbackfunction set usingSL_CTX_set_ver-
ify (3).
WARNINGS

Do not mix the verification callback described in this function withvrdfy callback function called
during the verification process. The latter is set using8le CTX_set_verif@) family of functions.

Providing a complete verification procedure including certificate purpose settings etc is a complex task.
The built-in procedure is quite powerful and in most cases it should be sufficient to modify its behav-
iour using theverify _callback function.

BUGS

RETURN VALUES
SSL_CTX_ set_cert_verify_callbaclfles not provide diagnostic information.

SEE ALSO
ssl(3), SSL_CTX_set veri@), SSL_get verify_resyl3), SSL_CTX_load_verify locatio(®)

HISTORY
Previous to OpenSSL 0.9.7, thegy argument toSSL_CTX_set_cert_verify_callbackwas ignored,
andcallbackwas called simply as
int (*callback)(X509_STORE_CTX *) To compile software written for previous versions of OpenSSL,
a dummy argument will have to be added#adiback

318 2002-02-28 0.9.7c

SSL_CTX_ set_cipher_list(3) OpenSSL SSL_CTX_ set_cipher_list(3)

NAME
SSL_CTX_ set_cipher_list, SSL_set_cipher_list — choose list of available SSL_CIPHERS

SYNOPSIS
#include <openssl/ssl.h>

int SSL_CTX_set_cipher_list(SSL_CTX *ctx, const char *str);
int SSL_set_cipher_list(SSL *ssl, const char *str);

DESCRIPTION
SSL_CTX_ set_cipher_lisgets the list of available ciphers ftix using the control stringtr. The for-
mat of the string is described aiphers(1). The list of ciphers is inherited by &l objects created
from ctx.

SSL_set_cipher_listfets the list of ciphers only fesl

NOTES
The control stringstr should be universally usable and not depend on details of the library configura-

tion (ciphers compiled in). Thus no syntax checking takes place. Items that are not recognized, because
the corresponding ciphers are not compiled in or because they are mistyped, are simply ignored. Failure

is only flagged if no ciphers could be collected at all.

It should be noted, that inclusion of a cipher to be used into the list is a necessary condition. On the
client side, the inclusion into the list is also sufficient. On the server side, additional restrictions apply.

All ciphers have additional requiremensDH ciphers don't need a certificate, but DH-parameters
must have been set. All other ciphers need a corresponding certificate and key.

A RSA cipher can only be chosen, wherR8A certificate is available RSA export ciphers with a
keylength of 512 bits for thBSA key require a temporary 512 IRISA key, as typically the supplied
key has a length of 1024 bit (s88L_CTX_set_tmp_rsa_callb&8k). RSA ciphers usingEDH need a

certificate and key and additional DH-parameters &&de CTX_set _tmp_dh_callb&ak).

A DSA cipher can only be chosen, wheb$A certificate is availableDSA ciphers always usBH key
exchange and therefore need DH-parametersSSeeCTX_set _tmp_dh_callb&ak).

When these conditions are not met for any cipher in the list (e.g. a client only supportsRSgort
ciphers with a asymmetric key length of 512 bits and the server is not configured to use teRprary
keys), the “no shared cipher's6L_R_NO_SHARED_CIPHERerror is generated and the handshake
will fail.

RETURN VALUES
SSL_CTX_ set_cipher_lis§hdSSL_set_cipher_list(eturn 1 if any cipher could be selected and 0 on
complete failure.

SEE ALSO
ssl(3), SSL_get ciphef8), SSL CTX_ use_certificg®, SSL CTX_ set tmp _rsa_callbd8k,
SSL_CTX_set_tmp_dh_callbd8k ciphers(1)

0.9.7c 2001-07-23 319

SSL_CTX_ set_client_CA_list(3) OpenSSL SSL_CTX_ set_client_ CA_list(3)

NAME
SSL_CTX_ set_client_CA list, SSL_set _client_CA_list, SSL_CTX add_client_CA,
SSL_add_client_CA - set list of CAs sent to the client when requesting a client certificate
SYNOPSIS

#include <openssl/ssl.h>

void SSL_CTX_set_client_ CA_list(SSL_CTX *ctx, STACK_OF(X509_ NAME) *list);
void SSL_set_client_ CA_list(SSL *s, STACK_OF(X509_NAME) *list);

int SSL_CTX add_client_ CA(SSL_CTX *ctx, X509 *cacert);

int SSL_add_client CA(SSL *ssl, X509 *cacert);

DESCRIPTION
SSL_CTX set_client_CA_listgts thdist of CAs sent to the client when requesting a client certificate
for ctx.

SSL_set_client_CA_listets thdist of CAs sent to the client when requesting a client certificate for
the chosessl, overriding the setting valid fesls SSL_CTXobject.

SSL_CTX add_client_ CAgylds theCA name extracted fromacertto the list of CAs sent to the client
when requesting a client certificate @x.

SSL_add_client_ CAfQdds theCA name extracted fromacertto the list of CAs sent to the client when
requesting a client certificate for the choseh overriding the setting valid fesls SSL_CTXobject.

NOTES
When aTLS/SSLserver requests a client certificate (S8&_CTX_set_verify options()), it sends a list
of CAs, for which it will accept certificates, to the client.

This list must explicitty be set usingSSL_CTX set client CA list)for ctx and
SSL_set_client_CA_listfpr the specifissl The list specified overrides the previous setting. The CAs
listed do not become trustedis{ only contains the names, not the complete certificates); use
SSL_CTX load_verify locatio(®®) to additionally load them for verification.

If the list of acceptable CAs is compiled in a file, 8L _load_client_ CA_fi[8) function can be used
to help importing the necessary data.

SSL_CTX_add_client_CA§hd SSL_add_client_CA@an be used to add additional items the list of
client CAs. If no list was specified before usin@SL _CTX set client CA_list(or
SSL_set_client_CA_list@ new clientCA list for ctx or ssl(as appropriate) is opened.

These functions are only useful firS/SSLservers.

RETURN VALUES
SSL_CTX set_client_ CA_lis#pdSSL_set client_ CA_listlo not return diagnostic information.

SSL_CTX add_client CA{pdSSL_add_client_ CApave the following return values:
1 The operation succeeded.

e A failure while manipulating th6 TACK_ORX509_NAME) object occurred or the X509 NAME
could not be extracted froomacert. Check the error stack to find out the reason.

EXAMPLES
Scan all certificates i@Afile and list them as acceptable CAs:

SSL_CTX set_client_CA _list(ctx,SSL_load_client_ CA_file(CAfile));

SEE ALSO
ssl(3), SSL_get_client_ CA_lig8), SSL_load_client CA fi[8), SSL_CTX load_verify_locatio(®)

320 2001-04-12 0.9.7c

SSL_CTX_ set_client_cert_ch(3) OpenSSL SSL_CTX set_client_cert_ch(3)

NAME
SSL_CTX set_client_cert_ch, SSL_CTX_ get_client_cert_cb — handle client certificate callback func-
tion
SYNOPSIS
#include <openssl/ssl.h>

void SSL_CTX_set_client_cert_ch(SSL_CTX *ctx, int (*client_cert_cb)(SSL *ssl, X509 **x509, EVP_PKEY **
int (*SSL_CTX_get_client_cert_cb(SSL_CTX *ctx))(SSL *ssl, X509 **x509, EVP_PKEY **pkey);
int (*client_cert_cb)(SSL *ssl, X509 **x509, EVP_PKEY **pkey);

DESCRIPTION
SSL_CTX set_client_cert_cls@ts theclient_cert_ch() callback, that is called when a client certificate
is requested by a server and no certificate was yet set f8sthubject.

Whenclient_cert_cb() is NULL, no callback function is used.
SSL_CTX get_client_cert_chéturns a pointer to the currently set callback function.

client_cert_cb()is the application defined callback. If it wants to set a certificate, a certificate/private
key combination must be set using #®9andpkey arguments and “1” must be returned. The certifi-

cate will be installed intgsl, see th&lOTES andBUGS sections. If no certificate should be set, “0”

has to be returned and no certificate will be sent. A negative return value will suspend the handshake
and the handshake function will return immediathSSL_get errof3) will return
SSL_ERROR_WANT_X509_LOOKUR indicate, that the handshake was suspended. The next call to the
handshake function will again lead to the caltlént cert_ch()It is the job of theclient_cert_cb(}o

store information about the state of the last call, if required to continue.

NOTES
During a handshake (or renegotiation) a server may request a certificate from the client. A client certifi-
cate must only be sent, when the server did send the request.

When a certificate was set using 8®8L_CTX_use_certificgt&) family of functions, it will be sent to

the server. Th@Ls standard requires that only a certificate is sent, if it matches the list of acceptable
CAs sent by the server. This constraint is violated by the default behavior of the OpenSSL library.
Using the callback function it is possible to implement a proper selection routine or to allow a user
interaction to choose the certificate to be sent.

If a callback function is defined and no certificate was yet defined f@sthebject, the callback func-
tion will be called. If the callback function returns a certificate, the OpenSSL library will try to load
the private key and certificate data into #8 object using th&SL_use_certificate@ndSSL_use_pri-
vate_key(functions. Thus it will permanently install the certificate and key forgBisobject. It will

not be reset by callin§SL_clea(3). If the callback returns no certificate, the OpenSSL library will
not send a certificate.

BUGS
Theclient_cert_cb()cannot return a complete certificate chain, it can only return one client certificate.
If the chain only has a length of 2, the r@at certificate may be omitted according to e standard
and thus a standard conforming answer can be sent to the server. For a longer chain, the client must
send the complete chain (with the option to leave out theOmaertificate). This can only be accom-
plished by either adding the intermediai@ certificates into the trusted certificate store for the
SSL_CTXobject (resulting in having to adth certificates that otherwise maybe would not be trusted),
or by adding the chain certificates using 8®L_CTX_ add_extra_chain_c€} function, which is
only available for thesSL_CTXobject as a whole and that therefore probably can only apply for one
client certificate, making the concept of the callback function (to allow the choice from several certifi-
cates) questionable.

Once theSSL object has been used in conjunction with the callback function, the certificate will be set
for the SSL object and will not be cleared even wh86L_clea(3) is being called. It is therefore
mandatory to destroy th&SL object usingSSL_fre€3) and create a new one to return to the previous
state.

0.9.7c 2002-06-12 321

SSL_CTX_ set_client_cert_ch(3) OpenSSL SSL_CTX set_client_cert_ch(3)

SEE ALSO
ssl(3), SSL_CTX use_certifica®), SSL_CTX_add_extra_chain_c€3}, SSL_get_client_CA_li3),
SSL_clea(3), SSL_fred3)

322 2002-06-12 0.9.7c

SSL_CTX_ set_default_passwd_cb(3) OpenSSL SSL_CTX_ set_default_passwd_cb(3)

NAME
SSL_CTX set default_passwd_cb, SSL_CTX_set default_passwd_cb_userdata — set passwd callback
for encrypted PEM file handling

SYNOPSIS
#include <openssl/ssl.h>

void SSL_CTX_ set_default_passwd_cb(SSL_CTX *ctx, pem_password_cb *cb);
void SSL_CTX_ set_default_passwd_cb_userdata(SSL_CTX *ctx, void *u);

int pem_passwd_cb(char *buf, int size, int rwflag, void *userdata);

DESCRIPTION
SSL_CTX_ set_default_passwd_cié)s the default password callback called when loading/storing a
PEM certificate with encryption.

SSL_CTX set_default_passwd_cb_userdaet§ a pointer taserdatawhich will be provided to the
password callback on invocation.

Thepem_passwd_cb(), which must be provided by the application, hands back the password to be used
during decryption. On invocation a pointeruserdatais provided. The pem_passwd_cb must write

the password into the provided buffarf which is of sizesize. The actual length of the password must

be returned to the calling functionwflag indicates whether the callback is used for reading/decryption
(rwflag=0) or writing/encryption (rwflag=1).

NOTES
When loading or storing private keys, a password might be supplied to protect the private key. The way
this password can be supplied may depend on the application. If only one private key is handled, it can
be practical to havpem_passwd_cbfandle the password dialog interactively. If several keys have to
be handled, it can be practical to ask for the password once, then keep it in memory and use it several
times. In the last case, the password could be stored intousbkedata storage and the
pem_passwd_cb@nly returns the password already stored.

When asking for the password interactivgdgm_passwd_cb@an userwflag to check, whether an
item shall be encrypted (rwflag=1). In this case the password dialog may ask for the same password
twice for comparison in order to catch typos, that would make decryption impossible.

Other items irPEM formatting (certificates) can also be encrypted, it is however not usual, as certificate
information is considered public.

RETURN VALUES
SSL_CTX set_default_passwd_clfd SSL_CTX_set default_passwd_cb_userdata(hot provide
diagnostic information.

EXAMPLES
The following example returns the password providedsesdatato the calling function. The pass-
word is considered to be a '\O’ terminated string. If the password does not fit into the buffer, the pass-
word is truncated.

int pem_passwd_ch(char *buf, int size, int rwflag, void *password)

{

strncpy(buf, (char *)(password), size);
buf[size - 1] ="\0’;
return(strlen(buf));

}

SEE ALSO
ssl(3), SSL_CTX use_certifica{®)

0.9.7c 2001-07-11 323

SSL_CTX_ set_generate_session_id(3) OpenSSL SSL_CTX_ set_generate_session_id(3)

NAME

SSL_CTX_ set _generate_session_id, SSL_set generate_session_id, SSL_has_matching_session_id —
manipulate generation of SSL session IDs (server only)

SYNOPSIS

#include <openssl/ssl.h>

typedef int (*GEN_SESSION_CB)(const SSL *ssl, unsigned char *id,
unsigned int *id_len);

int SSL_CTX_ set_generate_session_id(SSL_CTX *ctx, GEN_SESSION_CB ch);

int SSL_set_generate_session_id(SSL *ssl, GEN_SESSION_CB, ch);

int SSL_has_matching_session_id(const SSL *ssl, const unsigned char *id,
unsigned int id_len);

DESCRIPTION

SSL_CTX set _generate_session_g&H)s the callback function for generating new session ids for
SSL/TLSsessions foctx to bech.

SSL_set _generate_session_g)s the callback function for generating new session idSSofTLS
sessions fosslto becb.

SSL_has_matching_session_ickfecks, whether a session withidd(of lengthid_len) is already con-
tained in the internal session cache of the parent contest of

NOTES

324

When a new session is established between client and server, the server generates a session id. The ses-
sion id is an arbitrary sequence of bytes. The length of the session id is 16 bytes for SSLv2 sessions
and between 1 and 32 bytes for SSLv3/TLSv1. The session id is not security critical but must be unique
for the server. Additionally, the session id is transmitted in the clear when reusing the session so it must
not contain sensitive information.

Without a callback being set, an OpenSSL server will generate a unique session id from pseudo random
numbers of the maximum possible length. Using the callback function, the session id can be changed
to contain additional information like e.g. a host id in order to improve load balancing or external
caching techniques.

The callback function receives a pointer to the memory location tid fintio and a pointer to the max-
imum allowed lengthd_len. The buffer at locatioid is only guaranteed to have the sidelen. The
callback is only allowed to generate a shorter id and reiduden; the callbackmust neverincrease
id_len or write to the locatiod exceeding the given limit.

If a SSLv2 session id is generated dhden is reduced, it will be restored after the callback has fin-
ished and the session id will be padded with 0x00. It is not recommended to chardydetiéor
SSLv2 sessions. The callback can useSB&_get versiof8) function to check, whether the session
is of type SSLv2.

The locationd is filled with 0x00 before the callback is called, so the callback may only fill part of the
possible length and leai@ len untouched while maintaining reproducibility.

Since the sessions must be distinguished, session ids must be unique. Without the callback a random
number is used, so that the probability of generating the same session id is extremely small (2°128 pos-
sible ids for an SSLv2 session, 27256 for SSLv3/TLSv1). In order to assure the uniqueness of the gen-
erated session id, the callback must &3L_has_matching_session_id@d generate another id if a

conflict occurs. If an id conflict is not resolved, the handshake will fail. If the application codes e.g. a
unique host id, a unique process number, and a unique sequence number into the session id, uniqueness
could easily be achieved without randomness added (it should however be taken care that no confiden-
tial information is leaked this way). If the application can not guarantee uniqueness, it is recommended

to use the maximund_len and fill in the bytes not used to code special information with random data

to avoid collisions.

SSL_has_matching_session_id{)l only query the internal session cache, not the external one. Since

the session id is generated before the handshake is completed, it is not immediately added to the cache.

If another thread is using the same internal session cache, a race condition can occur in that another

thread generates the same session id. Collisions can also occur when using an external session cache,

2001-02-23 0.9.7c

SSL_CTX_ set_generate_session_id(3) OpenSSL SSL_CTX_ set_generate_session_id(3)

since the eternal cache is not tested wlSL_has_matching_session_ialf)d the same race condition
applies.

When callingSSL_has_matching_session_ifl{) an SSLv2 session with reducg&tl len, the match
operation will be performed using the fixed length required and with a 0x00 padded id.

The callback must return 0 if it cannot generate a session id for whatever reason and return 1 on suc-
cess.

EXAMPLES

The callback function listed will generate a session id with the server id given, and will fill the rest with
pseudo random bytes:

const char session_id_prefix = "www-18";

#define MAX_SESSION_ID_ATTEMPTS 10
static int generate_session_id(const SSL *ssl, unsigned char *id,
unsigned int *id_len)
{

unsigned int count = 0;
const char *version;

version = SSL_get_version(ssl);
if (Istrcmp(version, "SSLv2")
/* we must not change id_len */;

do {
RAND_pseudo_bytes(id, *id_len);
[* Prefix the session_id with the required prefix. NB: If our
* prefix is too long, clip it - but there will be worse effects
* anyway, eg. the server could only possibly create 1 session
* ID (ie. the prefix!) so all future session negotiations will
* fail due to conflicts. */
memcpy(id, session_id_prefix,
(strlen(session_id_prefix) < *id_len) ?
strlen(session_id_prefix) : *id_len);
}
while(SSL_has_matching_session_id(ssl, id, *id_len) &&
(++count < MAX_SESSION_ID_ATTEMPTS));
if(count >= MAX_SESSION_ID_ATTEMPTS)
return O;
return 1,

}
RETURN VALUES
SSL_CTX_ set _generate_session adJSSL_set generate_session_al@yays return 1.
SSL_has_matching_session_idfurns 1 if another session with the same id is already in the cache.
SEE ALSO
ssl(3), SSL_get_versiaf3)

HISTORY

SSL_CTX_ set _generate_session, id§SL_set_generate_session_iddnd SSL_has_matching_ses-
sion_id()have been introduced in OpenSSL 0.9.7.

0.9.7c 2001-02-23 325

SSL_CTX_set_info_callback(3) OpenSSL SSL_CTX_ set_info_callback(3)

NAME
SSL_CTX_ set_info_callback, SSL_CTX get_info_callback, SSL_set_info_callback,
SSL_get_info_callback — handle information callback for SSL connections

SYNOPSIS

#include <openssl/ssl.h>

void SSL_CTX_set_info_callback(SSL_CTX *ctx, void (*callback)());
void (*SSL_CTX_get_info_callback(SSL_CTX *ctx))();

void SSL_set_info_callback(SSL *ssl, void (*callback)());
void (*SSL_get_info_callback(SSL *ssl))();

DESCRIPTION
SSL_CTX set_info_callbaclggts thecallback function, that can be used to obtain state information
for SSL objects created fromtx during connection setup and use. The settingctoris overridden
from the setting for a specif@SL object, if specified. Whenallback is NULL, not callback function
is used.

SSL_set_info_callbackg§ets thecallback function, that can be used to obtain state informatiorsgbr
during connection setup and use. WIailback is NULL, the callback setting currently valid fotx
is used.

SSL_CTX get_info_callback@turns a pointer to the currently set information callback function for
Ctx.

SSL_get_info_callback(gturns a pointer to the currently set information callback functiossior

NOTES
When setting up a connection and during use, it is possible to obtain state information from the
SSL/TLS engine. When set, an information callback function is called whenever the state changes, an
alert appears, or an error occurs.

The callback function is called asallback(SSL *ssl, int where, int ret). Thewhere argument speci-
fies information about where (in which context) the callback function was callest.iff 0, an error
condition occurred. If an alert is handl&§L_CB_ALERTIs set andet specifies the alert information.

whereis a bitmask made up of the following bits:

SSL_CB_LOOP
Callback has been called to indicate state change inside a loop.

SSL_CB_EXIT
Callback has been called to indicate error exit of a handshake function. (May be soft error with
retry option for non-blocking setups.)

SSL_CB_READ
Callback has been called during read operation.

SSL_CB_WRITE
Callback has been called during write operation.

SSL_CB_ALERT
Callback has been called due to an alert being sent or received.

SSL_CB_READ_ALERT (SSL_CB_ALERT[SSL_CB_READ)
SSL_CB_WRITE_ALERT (SSL_CB_ALERT[SSL_CB_WRITE)
SSL_CB_ACCEPT_LOOP (SSL_ST_ACCEPTSSL_CB_LOOP)
SSL_CB_ACCEPT_EXIT (SSL_ST_ACCEPTISSL_CB_EXIT)
SSL_CB_CONNECT_LOOP (SSL_ST_CONNECTSSL_CB_LOOP)
SSL_CB_CONNECT_EXIT (SSL_ST_CONNECBSL_CB_EXIT)

SSL_CB_HANDSHAKE_START
Callback has been called because a new handshake is started.

SSL_CB_HANDSHAKE_DONE 0x20
Callback has been called because a handshake is finished.

The current state information can be obtained usin@8ie state_string®) family of functions.

326 2001-11-10 0.9.7c

SSL_CTX_set_info_callback(3) OpenSSL SSL_CTX_ set_info_callback(3)

Theret information can be evaluated using 8®L_alert_type_strin@) family of functions.

RETURN VALUES
SSL_set_info_callback@oes not provide diagnostic information.

SSL_get_info_callback(®turns the current setting.

EXAMPLES
The following example callback function prints state strings, information about alerts being handled
and error messages to thie_err BIO.

void apps_ssl_info_callback(SSL *s, int where, int ret)

{

const char *str;
int w;

w=where& "SSL_ST_MASK;

if (W& SSL_ST_CONNECT) str="SSL_connect";
else if (w & SSL_ST_ACCEPT) str="SSL_accept";
else str="undefined";

if (where & SSL_CB_LOOP)

{
BIO_printf(bio_err,"%s:%s\n",str,SSL_state_string_long(s));
}

else if (where & SSL_CB_ALERT)

{

BIO_printf(bio_err,"SSL3 alert %s:%s:%s\n",
str,
SSL_alert_type_string_long(ret),
SSL_alert_desc_string_long(ret));

}

else if (where & SSL_CB_EXIT)
{
if (ret ==0)

BIO_printf(bio_err,"%s:failed in %s\n",
str,SSL_state_string_long(s));
else if (ret < 0)

{

BIO_printf(bio_err,"%s:error in %s\n",
str,SSL_state_string_long(s));

}

SEE ALSO
ssl(3), SSL_state_string®), SSL_alert_type_strin@)

0.9.7c 2001-11-10 327

SSL_CTX_set_max_cert_list(3) OpenSSL SSL_CTX_set_max_cert_list(3)

NAME
SSL_CTX_ set_max_cert_list, SSL_CTX get max_cert_list, SSL_set _max_cert_list,
SSL_get_max_cert_list, — manipulate allowed for the peer’s certificate chain

SYNOPSIS

#include <openssl/ssl.h>

long SSL_CTX_set_max_cert_list(SSL_CTX *ctx, long size);
long SSL_CTX get _max_cert_list(SSL_CTX *ctx);
long SSL_set_max_cert_list(SSL *ssl, long size);
long SSL_get_max_cert_list(SSL *ctx);
DESCRIPTION
SSL_CTX set_max_cert_listgts the maximum size allowed for the peer’s certificate chain fesall

objects created fromix to be <size> bytes. Th&SL objects inherit the setting valid fotx at the time
SSL_newB) is being called.

SSL_CTX _get _max_cert_listéturns the currently set maximum size dox.

SSL_set_max_cert_listgpts the maximum size allowed for the peer’s certificate chaissfdao be
<size> bytes. This setting stays valid until a new value is set.

SSL_get_max_cert_list@@turns the currently set maximum size$et

NOTES
During the handshake process, the peer may send a certificate chaifLSI®L standard does not
give any maximum size of the certificate chain. The OpenSSL library handles incoming data by a
dynamically allocated buffer. In order to prevent this buffer from growing without bounds due to data
received from a faulty or malicious peer, a maximum size for the certificate chain is set.

The default value for the maximum certificate chain size is 100kB (30kB on theDiBbjilatform).
This should be sufficient for usual certificate chains (OpenSSL's default maximum chain length is 10,
seeSSL_CTX_set_verif@), and certificates without special extensions have a typical size of 1-2kB).

For special applications it can be necessary to extend the maximum certificate chain size allowed to be
sent by the peer, see e.g. the work on “Internet X.509 Public Key Infrastructure Proxy Certificate Pro-
file” and “ TLS Delegation Protocol” at http://www.ietf.org/ and http://www.globus.org/ .

Under normal conditions it should never be necessary to set a value smaller than the default, as the
buffer is handled dynamically and only uses the memory actually required by the data sent by the peer.

If the maximum certificate chain size allowed is exceeded, the handshake will fail with a
SSL_R_EXCESSIVE_MESSAGE_SIZ&ror.

RETURN VALUES
SSL_CTX set_max_cert_list)dSSL_set_max_cert_list@turn the previously set value.

SSL_CTX get max_cert_listdSSL_get _max_cert_list@turn the currently set value.

SEE ALSO
ssl(3), SSL_newWB), SSL_CTX_set_veri(g)

HISTORY
SSL* set/get_max_cert_listlave been introduced in OpenSSL 0.9.7.

328 2001-09-11 0.9.7c

SSL_CTX_set_mode(3) OpenSSL SSL_CTX_set_mode(3)

NAME
SSL_CTX set_mode, SSL_set mode, SSL_CTX_get mode, SSL_get_mode — manipulate SSL engine
mode

SYNOPSIS
#include <openssl/ssl.h>

long SSL_CTX_set_mode(SSL_CTX *ctx, long mode);
long SSL_set_mode(SSL *ssl, long mode);

long SSL_CTX _get mode(SSL_CTX *ctx);
long SSL_get_mode(SSL *ssl);

DESCRIPTION
SSL_CTX_ set_modeqiids the mode set via bitmasknmode to ctx. Options already set before are
not cleared.

SSL_set_mode@dds the mode set via bitmasknrode to ssl. Options already set before are not
cleared.

SSL_CTX_get _mode@turns the mode set fotx.
SSL_get_mode(gturns the mode set fesl

NOTES
The following mode changes are available:

SSL_MODE_ENABLE_PARTIAL_WRITE
Allow SSL_write(..., n) to return r with 0 < r < n (i.e. report success when just a single record has
been written). When not set (the defauigL_write(will only report success once the complete
chunk was written. Onc8SL_write(returns with r, r bytes have been successfully written and
the next call t&8SL_write()must only send the n—r bytes left, imitating the behaviowvrié().

SSL_MODE_ACCEPT_MOVING_WRITE_BUFFER
Make it possible to retrnsSL_write(with changed buffer location (the buffer contents must stay
the same). This is not the default to avoid the misconception that non-bldg&ingwrite()
behaves like non-blockingrite().

SSL_MODE_AUTO_RETRY
Never bother the application with retries if the transport is blocking. If a renegotiation take place
during normal operation, 8SL_read3) or SSL_writ€3) would return with -1 and indicate the
need to retry wittBSL_ERROR_WANT_READ In a non-blocking environment applications must
be prepared to handle incomplete read/write operations. In a blocking environment, applications
are not always prepared to deal with read/write operations returning without success report. The
flag SSL_MODE_AUTO_RETRWill cause read/write operations to only return after the handshake
and successful completion.

RETURN VALUES
SSL_CTX_ set_modedSSL_set_modefgturn the new mode bitmask after addingde

SSL_CTX_get mode{hdSSL_get _mode(gturn the current bitmask.

SEE ALSO
ssl(3), SSL_read3), SSL_writg3)

HISTORY
SSL_MODE_AUTO_RETRYas been added in OpenSSL 0.9.6.

0.9.7c 2001-07-11 329

SSL_CTX_set_msg_callback(3) OpenSSL SSL_CTX_set_msg_callback(3)

NAME
SSL_CTX_set_msg_callback, SSL_CTX set _msg_callback_arg, SSL_set_msg_callback,
SSL_get _msg_callback arg — install callback for observing protocol messages

SYNOPSIS

#include <openssl/ssl.h>

void SSL_CTX_set_msg_callback(SSL_CTX *ctx, void (*cb)(int write_p, int version, int content_type, const v
void SSL_CTX_set_msg_callback_arg(SSL_CTX *ctx, void *arg);

void SSL_set_msg_callback(SSL_CTX *ctx, void (*cb)(int write_p, int version, int content_type, const void *bi
void SSL_set_msg_callback_arg(SSL_CTX *ctx, void *arg);

DESCRIPTION
SSL_CTX set_msg_callback) SSL_set msg_callbackan be used to define a message callback
function cb for observing allSSL/TLS protocol messages (such as handshake messages) that are
received or sentSSL_CTX_ set _msg_callback_arg()Jd SSL_set msg_callback arg@n be used to
set argumendrg to the callback function, which is available for arbitrary application use.

SSL_CTX set _msg_callbackf)dSSL_CTX_set_msg_callback_argecify default settings that will
be copied to newsSL objects by SSL new3). SSL_set msg_callbackgnd SSL_set msg_call-
back _arg()modify the actual settings of &8L object. Using & pointer forcb disables the message
callback.

Whenchbis called by thesSL/TLSlibrary for a protocol message, the function arguments have the fol-
lowing meaning:

write_p
This flag isO when a protocol message has been received arebn a protocol message has been
sent.

version
The protocol version according to which the protocol message is interpreted by the library. Cur-
rently, this is one 06SL2_VERSION, SSL3_VERSIONandTLS1_VERSION (for SSL2.0,SSL3.0
andTLS 1.0, respectively).

content_type
In the case 08SL 2.0, this is alway$. In the case a6SL 3.0 orTLS 1.0, this is one of th€on-
tentType values defined in the protocol specificatichange_cipher_spec(20alert(21), hand-
shake(22); but neveapplication_data(23)because the callback will only be called for protocol
messages).

buf, len
buf points to a buffer containing the protocol message, which consita bftes. The buffer is
no longer valid after the callback function has returned.

ssl TheSSL object that received or sent the message.

arg The user-defined argument optionally defined BBSL CTX set msg_callback_arg@r
SSL_set _msg_callback_arg()

NOTES
Protocol messages are passed to the callback function after decryption and fragment collection where
applicable. (Thus record boundaries are not visible.)

If processing a received protocol message results in an error, the callback function may not be called.
For example, the callback function will never see messages that are considered too large to be pro-
cessed.

Due to automatic protocol version negotiativarsionis not necessarily the protocol version used by
the sender of the message: Iflzs 1.0 ClientHello message is received byssi 3.0-only serveryer-
sionwill be SSL3_VERSION

SEE ALSO
ssl(3), SSL_newl)

330 2002-08-15 0.9.7c

SSL_CTX_set_msg_callback(3) OpenSSL SSL_CTX_set_msg_callback(3)

HISTORY
SSL_CTX set _msg_callback()SSL_CTX_set _msg_callback arg()SSL_set _msg_callback()and
SSL_get_msg_callback_arg(ere added in OpenSSL 0.9.7.

0.9.7c 2002-08-15 331

SSL_CTX_set_options(3) OpenSSL SSL_CTX_set_options(3)

NAME
SSL_CTX set_options, SSL_set_options, SSL_CTX_get_options, SSL_get_options — manipulate SSL
engine options
SYNOPSIS
#include <openssl/ssl.h>

long SSL_CTX_set_options(SSL_CTX *ctx, long options);
long SSL_set_options(SSL *ssl, long options);

long SSL_CTX_ get_options(SSL_CTX *ctx);
long SSL_get_options(SSL *ssl);

DESCRIPTION
SSL_CTX_ set_options{yids the options set via bitmaskojptions to ctx. Options already set before
are not cleared!

SSL_set_options@dds the options set via bitmaskojotionsto ssl. Options already set before are not
cleared!

SSL_CTX_ get_optiong@turns the options set fotx.
SSL_get_options(eturns the options set fesl

NOTES
The behaviour of th&SL library can be changed by setting several options. The options are coded as
bitmasks and can be combined by a logarabperation (0. Options can only be added but can never
be reset.

SSL_CTX_ set_options@nd SSL_set_options@ffect the (external) protocol behaviour of tBSL
library. The (internal) behaviour of thPI can be changed by using the simB8L_CTX_set_mo(&)
andSSL_set_modefyinctions.

During a handshake, the option settings of3Be object are used. When a n@&8L object is created
from a context usingSL_new(), the current option setting is copied. Changet<tdo not affect
already create@SLobjects.SSL_clear(Hoes not affect the settings.

The followingbug workaround options are available:

SSL_OP_MICROSOFT_SESS_ID_BUG
www.microsoft.com — when talking SSLv2, if session-id reuse is performed, the session-id passed
back in the server-finished message is different from the one decided upon.

SSL_OP_NETSCAPE_CHALLENGE_BUG
Netscape—Commerce/1.12, when talking SSLv2, accepts a 32 byte challenge but then appears to
only use 16 bytes when generating the encryption keys. Using 16 bytes is ok but it should be ok
to use 32. According to the SSLv3 spec, one should use 32 bytes for the challenge when operat-
ing in SSLv2/v3 compatibility mode, but as mentioned above, this breaks this server so 16 bytes is
the way to go.

SSL_OP_NETSCAPE_REUSE_CIPHER_CHANGE_BUG
ssl3.netscape.com:443, first a connection is establishedr@ithMD5. If it is then resumed, we
end up usin@PES-CBC3-SHA It should beRC4-MD5according to 7.6.1.3, 'cipher_suite’.

Netscape—Enterprise/2.01 (https://merchant.netscape.com) has this bug. It only really shows up
when connecting via SSLv2/v3 then reconnecting via SSLv3. The cipher list changes....

NEW INFORMATION. Try connecting with a cipher list of juStES-CBC-SHA:RC4-MD5 For

some weird reason, each new connection UR€g-MD5 but a re-connect tries to use
DES-CBC-SHA So netscape, when doing a re—connect, always takes the first cipher in the cipher
list.

SSL_OP_SSLREF2_REUSE_CERT_TYPE_BUG

SSL_OP_MICROSOFT _BIG_SSLV3_BUFFER

332 2003-03-20 0.9.7c

SSL_CTX_set_options(3) OpenSSL SSL_CTX_set_options(3)

0.9.7¢c

SSL_OP_MSIE_SSLV2_RSA_PADDING
SSL_OP_SSLEAY_080_CLIENT_DH_BUG
SSL_OP_TLS_D5_BUG
SSL_OP_TLS_BLOCK_PADDING_BUG

SSL_OP_DONT_INSERT_EMPTY_FRAGMENTS
Disables a countermeasure againssa3.0/TLS 1.0 protocol vulnerability affectirgBC ciphers,
which cannot be handled by some brok&timplementations. This option has no effect for con-
nections using other ciphers.

SSL_OP_ALL
All of the above bug workarounds.

It is usually safe to useSL_OP_ALL to enable the bug workaround options if compatibility with some-
what broken implementations is desired.

The followingmodifying options are available:

SSL_OP_TLS_ROLLBACK_BUG
Disable version rollback attack detection.

During the client key exchange, the client must send the same information about acceptable
SSL/TLS protocol levels as during the first hello. Some clients violate this rule by adapting to the
server's answer. (Example: the client sends a SSLv2 hello and accepts up to SSLv3.1=TLSvl, the
server only understands up to SSLv3. In this case the client must still use the same
SSLv3.1=TLSv1l announcement. Some clients step down to SSLv3 with respect to the server's
answer and violate the version rollback protection.)

SSL_OP_SINGLE_DH_USE
Always create a new key when wusing temporary/ephemdyal parameters (see
SSL_CTX_set_tmp_dh_callbg8K). This option must be used to prevent small subgroup attacks,
when theDH parameters were not generated using “strong” primes (e.g. when using DSA-param-
eters, seelhparam(1)). If “strong” primes were used, it is not strictly necessary to generate a
new DH key during each handshake but it is also recommen@si. OP_SINGLE_DH_USE
should therefore be enabled whenever temporary/ephebt¢drameters are used.

SSL_OP_EPHEMERAL_RSA
Always use ephemeral (temporaryRSA key when doing RSA operations (see
SSL_CTX_ set_tmp_rsa_callb48)). According to the specifications this is only done, when a
RSA key can only be used for signature operations (namely under export ciphers with restricted
RSA keylength). By setting this option, ephemeRa&lA keys are always used. This option breaks
compatibility with theSSL/TLS specifications and may lead to interoperability problems with
clients and should therefore never be used. Ciphers &bt (ephemeral Diffie—Hellman) key
exchange should be used instead.

SSL_OP_CIPHER_SERVER_PREFERENCE
When choosing a cipher, use the server’s preferences instead of the client preferences. When not
set, theSSL server will always follow the clients preferences. When set, the SSLv3/TLSv1 server
will choose following its own preferences. Because of the different protocol, for SSLv2 the server
will send his list of preferences to the client and the client chooses.

SSL_OP_PKCS1_CHECK_1
SSL_OP_PKCS1_CHECK_2

SSL_OP_NETSCAPE_CA DN_BUG
If we accept a netscape connection, demand a client cert, have a non-selegigmeith does
not have itsCA in netscape, and the browser has a cert, it will crash/hang. Works for 3.x and
4 .xbeta

2003-03-20 333

SSL_CTX_set_options(3) OpenSSL SSL_CTX_set_options(3)

SSL_OP_NETSCAPE_DEMO_CIPHER_CHANGE_BUG

SSL_OP_NO_SSLv2
Do not use the SSLv2 protocol.

SSL_OP_NO_SSLv3
Do not use the SSLv3 protocol.

SSL_OP_NO_TLSv1
Do not use the TLSv1 protocol.

SSL_OP_NO_SESSION_RESUMPTION_ON_RENEGOTIATION
When performing renegotiation as a server, always start a new session (i.e., session resumption
requests are only accepted in the initial handshake). This option is not needed for clients.

RETURN VALUES
SSL_CTX_ set _options(hdSSL_set_options(turn the new options bitmask after addaggions.

SSL_CTX get _optionsfhdSSL_get options(eturn the current bitmask.

SEE ALSO
ssl(3), SSL_newB), SSL_cleaf3), SSL_CTX_ set_tmp_dh_callbd8k, SSL_CTX_set tmp_rsa_call-
back(3), dhparam(1)

HISTORY
SSL_OP_CIPHER_SERVER_PREFERENCE and SSL_OP_NO_SESSION_RESUMPTION_ON_RENE-
GOTIATION have been added in OpenSSL 0.9.7.

SSL_OP_TLS_ROLLBACK_BUG has been added in OpenSSL 0.9.6 and was automatically enabled
with SSL_OP_ALL. As 0f 0.9.7, it is no longer included 88L_OP_ALL and must be explicitly set.

SSL_OP_DONT_INSERT_EMPTY_FRAGMENTS has been added in OpenSSL 0.9.6e. Versions up to
OpenSSL 0.9.6¢ do not include the countermeasure that can be disabled with this option (in OpenSSL
0.9.6d, it was always enabled).

334 2003-03-20 0.9.7c

SSL_CTX_ set_quiet_shutdown(3) OpenSSL SSL_CTX_ set_quiet_shutdown(3)

NAME

SSL_CTX set_quiet_shutdown, SSL_CTX get_quiet_shutdown, SSL_set_quiet_shutdown,
SSL_get_quiet_shutdown — manipulate shutdown behaviour

SYNOPSIS

#include <openssl/ssl.h>

void SSL_CTX_set_quiet_shutdown(SSL_CTX *ctx, int mode);
int SSL_CTX_ get_quiet_shutdown(SSL_CTX *ctx);

void SSL_set_quiet_shutdown(SSL *ssl, int mode);
int SSL_get_quiet_shutdown(SSL *ssl);

DESCRIPTION

SSL_CTX_ set_quiet_shutdowséts the “quiet shutdown” flag forctx to be mode. SSL objects cre-
ated fromctx inherit themodevalid at the timeSSL_new3) is calledmodemay be 0 or 1.

SSL_CTX_get_quiet_shutdowrgurns the “quiet shutdown” setting ofx.

SSL_set_quiet_shutdowrs@ts the “quiet shutdown” flag fosslto bemode. The setting stays valid
until sslis removed withSSL_fre€3) or SSL_set_quiet_shutdowrig) called again. It is not changed
whenSSL_clea(3) is called.modemay be 0 or 1.

SSL_get_quiet_shutdowméturns the “quiet shutdown” setting bl

NOTES

Normally when aSSL connection is finished, the parties must send out “close notify” alert messages
usingSSL_shutdowgB) for a clean shutdown.

When setting the “quiet shutdown” flag to J5SL shutdowf8) will set the internal flags to
SSL_SENT_SHUTDOWMSL_RECEIVED _SHUTDOWN. §SL_shutdowfB8) then behaves like
SSL_set_shutdow8) called with SSL_SENT_SHUTDOWNI[SSL_RECEIVED_SHUTDOWN.) The
session is thus considered to be shutdown, but no “close notify” alert is sent to the peer. This behaviour
violates theTLS standard.

The default is normal shutdown behaviour as described byLthstandard.

RETURN VALUES

SSL_CTX_ set_quiet_shutdowa@dSSL_set quiet_shutdowlQ) not return diagnostic information.
SSL_CTX get_quiet_shutdowafd SSL_get_quiet_shutdown return the current setting.

SEE ALSO

0.9.7c

ssl(3), SSL_shutdowf8), SSL_set_shutdovB), SSL_newB), SSL_clea(3), SSL_fre€3)

2001-08-17 335

SSL_CTX_set_session_cache_mode(3) OpenSSL SSL_CTX_set_session_cache_mode(3)

NAME
SSL_CTX set_session_cache_mode, SSL_CTX_get session_cache_mode - enable/disable session
caching

SYNOPSIS
#include <openssl/ssl.h>

long SSL_CTX_set_session_cache_mode(SSL_CTX ctx, long mode);
long SSL_CTX_ get_session_cache_mode(SSL_CTX ctx);

DESCRIPTION
SSL_CTX_ set_session_cache_moeeébles/disables session caching by setting the operational mode
for ctx to <mode>.

SSL_CTX get_session_cache_mou(kns the currently used cache mode.

NOTES
The OpenSSL library can store/retries®L/TLS sessions for later reuse. The sessions can be held in
memory for eacletx, if more than one&SL_CTXobject is being maintained, the sessions are unique for
eachSSL_CTXobject.

In order to reuse a session, a client must send the session’s id to the server. It can only send exactly one
id. The server then either agrees to reuse the session or it starts a full handshake (to create a new ses-
sion).

A server will lookup up the session in its internal session storage. If the session is not found in internal
storage or lookups for the internal storage have been deacti&sedSESS CACHE_NO_INTER-
NAL_LOOKUP), the server will try the external storage if available.

Since a client may try to reuse a session intended for use in a different context, the session id context
must be set by the server (&8L_CTX_set_session_id_con(axt

The following session cache modes and modifiers are available:

SSL_SESS_CACHE_OFF
No session caching for client or server takes place.

SSL_SESS_CACHE_CLIENT
Client sessions are added to the session cache. As there is no reliable way for the OpenSSL library
to know whether a session should be reused or which session to choose (due to theBabstract
layer theSSL engine does not have details about the connection), the application must select the
session to be reused by using B®8L_set sessi¢®) function. This option is not activated by
default.

SSL_SESS_CACHE_SERVER
Server sessions are added to the session cache. When a client proposes a session to be reused, the
server looks for the corresponding session in (first) the internal session cache (unless
SSL_SESS CACHE_NO_INTERNAL_LOOKUR set), then (second) in the external cache if avail-
able. If the session is found, the server will try to reuse the session. This is the default.

SSL_SESS_CACHE_BOTH
Enable bottsSL_SESS_CACHE_CLIENandSSL_SESS_CACHE_SERVE& the same time.

SSL_SESS_CACHE_NO_AUTO_CLEAR
Normally the session cache is checked for expired sessions every 255 connections using the
SSL_CTX flush_sessidB3$ function. Since this may lead to a delay which cannot be controlled,
the automatic flushing may be disabled &8L_CTX_ flush_sessidB3% can be called explicitly
by the application.

SSL_SESS_CACHE_NO_INTERNAL_LOOKUP
By setting this flag, session-resume operations ®sanTLSserver will not automatically look up
sessions in the internal cache, even if sessions are automatically stored there. If external session
caching callbacks are in use, this flag guarantees that all lookups are directed to the external cache.
As automatic lookup only applies fésL/TLSservers, the flag has no effect on clients.

336 2002-10-29 0.9.7c

SSL_CTX_set_session_cache_mode(3) OpenSSL SSL_CTX_set_session_cache_mode(3)

SSL_SESS_CACHE_NO_INTERNAL_STORE
Depending on the presence $6L_SESS_CBHE_CLIENT and/or SSL_SESS_CBHE_SERVER
sessions negotiated in &s$L/TLS handshake may be cached for possible reuse. Normally a new
session is added to the internal cache as well as any external session caching (callback) that is con-
figured for theSSL_CTX This flag will prevent sessions being stored in the internal cache (though
the application can add them manually usBfgl._CTX_add_sessi8)). Note: in anySSL/TLS
servers where external caching is configured, any successful session lookups in the external cache
(ie. for session-resume requests) would normally be copied into the local cache before processing
continues - this flag prevents these additions to the internal cache as well.

SSL_SESS_CACHE_NO_INTERNAL
Enable bothSSL_SESS CACHE_NO_INTERNAL_LOOKURand SSL_SESS CACHE_NO_INTER-
NAL_STOREat the same time.

The default mode iISSL_SESS_CACHE_SERVER

RETURN VALUES

SSL_CTX_ set_session_cache_moadtyns the previously set cache mode.
SSL_CTX get _session_cache _moua(yns the currently set cache mode.

SEE ALSO

ssl(3), SSL_set_sessi@B), SSL_session_reus@), SSL_CTX_add_sessi@), SSL_CTX_sess_num-
ber(3), SSL_CTX_sess_set_cache @e SSL_CTX_sess_set get(8h SSL_CTX_set_ses-
sion_id_contex{3), SSL_CTX_set_timeo(®), SSL_CTX_flush_sessidB3

HISTORY

0.9.7c

SSL_SESS_CACHE_NO_INTERNAL_STORENASSL_SESS_CACHE_NO_INTERNAWwere introduced in
OpenSSL 0.9.6h.

2002-10-29 337

SSL_CTX set_session_id_context(3) OpenSSL SSL_CTX set_session_id_context(3)

NAME
SSL_CTX set_session_id_context, SSL_set_session_id_context — set context within which session can
be reused (server side only)

SYNOPSIS
#include <openssl/ssl.h>

int SSL_CTX_set_session_id_context(SSL_CTX *ctx, const unsigned char *sid_ctx,
unsigned int sid_ctx_len);
int SSL_set_session_id_context(SSL *ssl, const unsigned char *sid_ctx,
unsigned int sid_ctx_len);

DESCRIPTION
SSL_CTX_ set_session_id_contesgfs the contexdid_ctx of lengthsid_ctx_lenwithin which a ses-
sion can be reused for th&x object.

SSL_set _session_id_contes#)s the contexdid_ctx of lengthsid_ctx_lenwithin which a session can
be reused for thsslobject.

NOTES
Sessions are generated within a certain context. When exporting/importing sessions with
i2d_SSL_SESSION/d2i_SSL_SESSIOMN would be possible, to re-import a session generated from
another context (e.g. another application), which might lead to malfunctions. Therefore each applica-
tion must set its own session id contsit _ctx which is used to distinguish the contexts and is stored
in exported sessions. Tha_ctxcan be any kind of binary data with a given length, it is therefore pos-
sible to use e.g. the name of the application and/or the hostname and/or service name ...

The session id context becomes part of the session. The session id context is seSbiftisserver.
The SSL_CTX set_session_id_conteat()) SSL_set_session_id_conteft)ctions are therefore only
useful on the server side.

OpenSSL clients will check the session id context returned by the server when reusing a session.
The maximum length of thad_ctxis limited toSSL_MAX_SSL_SESSION_ID_LENGTH

WARNINGS
If the session id context is not set onSBL/TLS server, stored sessions will not be reused but a fatal
error will be flagged and the handshake will fail.

If a server returns a different session id context to an OpenSSL client when reusing a session, an error
will be flagged and the handshake will fail. OpenSSL servers will always return the correct session id
context, as an OpenSSL server checks the session id context itself before reusing a session as described
above.

RETURN VALUES
SSL_CTX set _session_id_contesttQSSL_set session_id_contexéfurn the following values:

» The lengthsid_ctx_lenof the session id contegid_ctx exceeded the maximum allowed length of
SSL_MAX_SSL_SESSION_ID_LENGTH The error is logged to the error stack.

1 The operation succeeded.

SEE ALSO
ssl(3)

338 2001-01-31 0.9.7c

SSL_CTX_set_ssl_version(3) OpenSSL SSL_CTX_ set_ssl_version(3)

NAME

SSL_CTX set_ssl _version, SSL_set ssl_method, SSL_get ssl method - choose a new TLS/SSL
method

SYNOPSIS
#include <openssl/ssl.h>

int SSL_CTX_set_ssl_version(SSL_CTX *ctx, SSL_ METHOD *method);
int SSL_set_ssl_method(SSL *s, SSL_METHOD *method);
SSL_METHOD *SSL_get_ssl_method(SSL *ssl);

DESCRIPTION
SSL_CTX set_ssl_versiors@ts a new defauffLS/SSL method for SSL objects newly created from
this ctx. SSL objects already created wiBSL_newW3) are not affected, except wh&S$L_clea(3) is
being called.

SSL_set_ssl_method{gts a newlLS/SSL method for a particularssl object. It may be reset, when
SSL_clear()s called.

SSL_get_ssl_method6éturns a function pointer to th&S/SSLmethod set irssl

NOTES
The availablanethod choices are described 85L_CTX_neyB).

When SSL_clea(3) is called and no session is connected ts@nobject, the method of thesL
object is reset to the method currently set in the correspoBgingCTXobject.

RETURN VALUES
The following return values can occur 86L_CTX_set _ssl versioaf)JdSSL_set _ssl_method()

* The new choice failed, check the error stack to find out the reason.
1 The operation succeeded.

SEE ALSO
SSL_CTX _ne{B), SSL_new3), SSL_clea(3), ssl(3), SSL_set_connect_st8)

0.9.7c 2001-03-08 339

SSL_CTX_set_timeout(3) OpenSSL SSL_CTX_set_timeout(3)

NAME
SSL_CTX set_timeout, SSL_CTX_get_timeout — manipulate timeout values for session caching

SYNOPSIS
#include <openssl/ssl.h>

long SSL_CTX_set_timeout(SSL_CTX *ctx, long t);
long SSL_CTX_ get_timeout(SSL_CTX *ctx);

DESCRIPTION
SSL_CTX_ set_timeoutgpts the timeout for newly created sessionsctorto t. The timeout valud
must be given in seconds.

SSL_CTX get_timeout@turns the currently set timeout value ¢ox.

NOTES
Whenever a new session is created, it is assigned a maximum lifetime. This lifetime is specified by
storing the creation time of the session and the timeout value valid at this time. If the actual time is later
than creation time plus timeout, the session is not reused.

Due to this realization, all sessions behave according to the timeout value valid at the time of the ses-
sion negotiation. Changes of the timeout value do not affect already established sessions.

The expiration time of a single session can be modified usifgSheSESSION_get i3 family of
functions.

Expired sessions are removed from the internal session cache, wheBev&TX flush_sessidB3is
called, either directly by the application or automatically 88e_CTX_set _session_cache_n{djje

The default value for session timeout is decided on a per protocol basSlseget default_time-
out(3). All currently supported protocols have the same default timeout value of 300 seconds.

RETURN VALUES
SSL_CTX_set_timeout@turns the previously set timeout value.

SSL_CTX_ get_timeout@turns the currently set timeout value.

SEE ALSO
ssl(3), SSL_CTX set session_cache nf8ile SSL_SESSION get tif®, SSL_CTX flush_ses-
sions(3), SSL_get_default_timeo(®)

340 2001-08-17 0.9.7c

SSL_CTX_ set_tmp_dh_callback(3) OpenSSL SSL_CTX_ set_tmp_dh_callback(3)

NAME

SSL_CTX set tmp_dh_callback, SSL_CTX set tmp_dh, SSL_set tmp_dh_callback,
SSL_set_tmp_dh — handle DH keys for ephemeral key exchange

SYNOPSIS

#include <openssl/ssl.h>

void SSL_CTX_set_tmp_dh_callback(SSL_CTX *ctx,
DH *(*tmp_dh_callback)(SSL *ssl, int is_export, int keylength));
long SSL_CTX_set_tmp_dh(SSL_CTX *ctx, DH *dh);

void SSL_set tmp_dh_callback(SSL_CTX *ctx,
DH *(*tmp_dh_callback)(SSL *ssl, int is_export, int keylength));
long SSL_set_tmp_dh(SSL *ssl, DH *dh)

DH *(*tmp_dh_callback)(SSL *ssl, int is_export, int keylength));

DESCRIPTION

SSL_CTX set tmp_dh_callbackéts the callback function fatx to be used when aH parameters
are required tomp_dh_callback. The callback is inherited by allobjects created fromtx.

SSL_CTX set tmp_dHgtsDH parameters to be used todie The key is inherited by afislobjects
created fronctx.

SSL_set tmp_dh_callbaclsgts the callback only fasl
SSL_set_tmp_dhgpts the parameters only &sl
These functions apply ®SL/TLSservers only.

NOTES

0.9.7c

When using a cipher witRSA authentication, an ephemetzt key exchange can take place. Ciphers
with DSA keys always use ephemetzh keys as well. In these cases, the session data are negotiated
using the ephemeral/temporaby key and the key supplied and certified by the certificate chain is
only used for signing. Anonymous ciphers (without a permanent server key) also use epbémeral
keys.

Using ephemerabH key exchange yields forward secrecy, as the connection can only be decrypted,
when theDH key is known. By generating a tempora# key inside the server application that is lost
when the application is left, it becomes impossible for an attacker to decrypt past sessions, even if he
gets hold of the normal (certified) key, as this key was only used for signing.

In order to perform ®H key exchange the server must usgHegroup OH parameters) and generate a

DH key. The server will always generate a rawkey during the negotiation, when tbél parameters

are supplied via callback and/or when the&SL _OP_SINGLE_DH_USE option of
SSL_CTX_ set_optiofB) is set. It will immediately createlzH key, whenDH parameters are supplied

via SSL_CTX_set_tmp_drghdSSL_OP_SINGLE_DH_USIH5 not set. In this case, it may happen that a
key is generated on initialization without later being needed, while on the other hand the computer time
during the negotiation is being saved.

If “strong” primes were used to generate thel parameters, it is not strictly necessary to generate a
new key for each handshake but it does improve forward secrecy. If it is not assured, that “strong”
primes were used (see especially the section ai@aiparameters belowjSL_OP_SINGLE_DH_USE

must be used in order to prevent small subgroup attacks. AlwaysS&in@P_SINGLE_DH_USHhas

an impact on the computer time needed during negotiation, but it is not very large, so application
authors/users should consider to always enable this option.

As generatingDH parameters is extremely time consuming, an application should not generate the
parameters on the fly but supply the parametBis$.parameters can be reused, as the actual key is
newly generated during the negotiation. The risk in reusigarameters is that an attacker may spe-
cialize on a very often usézH group. Applications should therefore generate their biwmparameters
during the installation process using the opedhglaram(1) application. In order to reduce the com-
puter time needed for this generation, it is possible taD$zeparameters instead (sdbparam(1)),

but in this cas&SL_OP_SINGLE_DH_USIi5 mandatory.

Application authors may compile ibH parameters. Files dh512.pem, dh1024.pem, dh2048.pem, and

2001-09-07 341

SSL_CTX_ set_tmp_dh_callback(3) OpenSSL

342

SSL_CTX_ set_tmp_dh_callback(3)

dh4096 in the 'apps’ directory of currengrgion of the OpenSSL distribution contain tB&IP' DH

parameters, which use safe primes and were generated verifiably pseudo-randomly. These files can be

converted into C code using th€ option of thedhparam(1) application. Authors may also generate

their own set of parameters usidgparam(1), but a user may not be sure how the parameters were
generated. The generationmfi parameters during installation is therefore recommended.

An application may either directly specify tbel parameters or can supply tbel parameters via a

callback function. The callback approach has the advantage, that the callback maypsupgaigme-

ters for different key lengths.

The tmp_dh_callback is called with thekeylength needed and thés_export information. The
is_exportflag is set, when the ephemebad key exchange is performed with an export cipher.

EXAMPLES

HandleDH parameters for key lengths of 512 and 1024 bits. (Error handling partly left out.)

/* Set up ephemeral DH stuff */
DH *dh_512 = NULL;

DH *dh_1024 = NULL;

FILE *paramfile;

/* "openssl| dhparam -out dh_param_512.pem -2 512" */

paramfile = fopen("dh_param_512.pem", "r");

if (paramfile) {
dh_512 = PEM_read_DHparams(paramfile, NULL, NULL, NULL);
fclose(paramfile);

}

/* "openss| dhparam -out dh_param_1024.pem -2 1024" */

paramfile = fopen("dh_param_1024.pem", "r");

if (paramfile) {
dh_1024 = PEM_read_DHparams(paramfile, NULL, NULL, NULL);
fclose(paramfile);

}

/* "openssl dhparam -C -2 512" etc... */
DH *get_dh512() { ... }
DH *get_dh1024() { ... }

DH *tmp_dh_callback(SSL *s, int is_export, int keylength)

{
DH *dh_tmp=NULL;

switch (keylength) {
case 512:
if (/dh_512)
dh_512 = get_dh512();
dh_tmp =dh_512;
break;
case 1024:
if (/dh_1024)
dh_1024 = get_dh1024();
dh_tmp = dh_1024;
break;
default:

/* Generating a key on the fly is very costly, so use what is there */

setup_dh_parameters_like_above();

}
return(dh_tmp);

2001-09-07

0.9.7¢c

SSL_CTX_ set_tmp_dh_callback(3) OpenSSL SSL_CTX_ set_tmp_dh_callback(3)

RETURN VALUES
SSL_CTX set tmp_dh_callback()[dSSL_set tmp_dh_callbackid not return diagnostic output.

SSL_CTX set tmp_dlhdSSL_set tmp_dh¢o return 1 on success and 0 on failure. Check the error
gueue to find out the reason of failure.

SEE ALSO
ssl(3), SSL_CTX_set_cipher_I{&), SSL_CTX_set_tmp_rsa_callbd8k SSL CTX set optio(3),
ciphers(1), dhparam(1)

0.9.7c 2001-09-07 343

SSL_CTX set tmp_rsa_callback(3) OpenSSL SSL_CTX set tmp_rsa_callback(3)

NAME

SSL_CTX_ set tmp_rsa_callback, SSL_CTX set _tmp_rsa, SSL_CTX _need_tmp_rsa,
SSL_set tmp_rsa_callback, SSL_set tmp_rsa, SSL_need_tmp_rsa — handle RSA keys for ephemeral
key exchange

SYNOPSIS

#include <openssl/ssl.h>

void SSL_CTX_set tmp_rsa_callback(SSL_CTX *ctx,

RSA *(*tmp_rsa_callback)(SSL *ssl, int is_export, int keylength));
long SSL_CTX_set_tmp_rsa(SSL_CTX *ctx, RSA *rsa);
long SSL_CTX need_tmp_rsa(SSL_CTX *ctx);

void SSL_set tmp_rsa_callback(SSL_CTX *ctx,

RSA *(*tmp_rsa_callback)(SSL *ssl, int is_export, int keylength));
long SSL_set_tmp_rsa(SSL *ssl, RSA *rsa)
long SSL_need_tmp_rsa(SSL *ssl)

RSA *(*tmp_rsa_callback)(SSL *ssl, int is_export, int keylength));

DESCRIPTION

SSL_CTX set tmp_rsa_callbacldgts the callback function fortx to be used when a tempo-
rary/lephemeraRSA key is required tdmp_rsa_callback The callback is inherited by &ISL objects
newly created fromctx with <SSL_neB)[3SL_new(3)>. Already createdSSL objects are not
affected.

SSL_CTX_ set tmp_rsafgts the temporary/ephemeRrsA key to be used to besa. The key is inher-
ited by allSSL objects newly created frootx with <SSL_newW3)[SSL_new3)>. Already create&SL
objects are not affected.

SSL_CTX need_tmp_rsa@turns 1, if a temporary/ephemeiRBA key is needed for RSA-based
strength-limited 'exportable’ ciphersuites becauskRSa key with a keysize larger than 512 bits is
installed.

SSL_set tmp_rsa_callbaclsgts the callback only fasl
SSL_set_tmp_rsagets the key only fassl

SSL_need_tmp_rsa@turns 1, if a temporary/ephemeR8A key is needed, for RSA-based strength-
limited 'exportable’ ciphersuites becausB®A key with a keysize larger than 512 bits is installed.

These functions apply ®SL/TLSservers only.

NOTES

344

When using a cipher witRSA authentication, an ephemeR$A key exchange can take place. In this
case the session data are negotiated using the ephemeral/terRgarigy and theRSA key supplied
and certified by the certificate chain is only used for signing.

Under previous export restrictions, ciphers wWR®A keys shorter (512 bits) than the usual key length
of 1024 bits were created. To use these ciphers R@h keys of usual length, an ephemeral key
exchange must be performed, as the normal (certified) key cannot be directly used.

Using ephemeraRSA key exchange yields forward secrecy, as the connection can only be decrypted,
when theRSA key is known. By generating a tempor&gA key inside the server application that is

lost when the application is left, it becomes impossible for an attacker to decrypt past sessions, even if
he gets hold of the normal (certifie@$A key, as this key was used for signing only. The downside is
that creating ®&SA key is computationally expensive.

Additionally, the use of ephemergBA key exchange is only allowed in theS standard, when the

RSA key can be used for signing only, that is for export ciphers. Using epheRsx&ley exchange

for other purposes violates the standard and can break interoperability with clients. It is therefore
strongly recommended to not use ephemesd key exchange and u&bH (Ephemeral Diffie-Hell-

man) key exchange instead in order to achieve forward secrecyS&eeCTX set tmp_dh_call-
back(3)).

On OpenSSL servers ephemarsla key exchange is therefore disabled by default and must be explic-
ity enabled using the&SL_OP_EPHEMERAL_RS/ption of SSL_CTX_set_optiof), violating the

2001-09-07 0.9.7c

SSL_CTX set tmp_rsa_callback(3) OpenSSL SSL_CTX set tmp_rsa_callback(3)

TLS/SSLstandard. When ephemeR$A key exchange is required for export ciphers, it will automati-
cally be used without this option!

An application may either directly specify the key or can supply the key via a callback function. The
callback approach has the advantage, that the callback may generate the key only in case it is actually
needed. As the generation oR8Akey is however costly, it will lead to a significant delay in the hand-
shake procedure. Another advantage of the callback function is that it can supply keys of different size
(e.g. forSSL_OP_EPHEMERAL_RSAIsage) while the explicit setting of the key is only useful for key

size of 512 bits to satisfy the export restricted ciphers and does give away key length if a longer key
would be allowed.

The tmp_rsa_callback is called with thekeylength needed and thés_export information. The
is_exportflag is set, when the ephemeRa&lA key exchange is performed with an export cipher.

EXAMPLES

0.9.7c

Generate temporaSA keys to prepare ephemeR#$A key exchange. As the generation A key
costs a lot of computer time, they saved for later reuse. For demonstration purposes, two keys for 512
bits and 1024 bits respectively are generated.

/* Set up ephemeral RSA stuff */
RSA *rsa_512 = NULL,;
RSA *rsa_1024 = NULL,;

rsa_512 = RSA generate_key(512,RSA_F4,NULL,NULL);
if (rsa_512 == NULL)
evaluate_error_queue();
rsa_1024 = RSA generate_key(1024,RSA_F4,NULL,NULL);
if (rsa_1024 == NULL)
evaluate_error_queue();

RSA *tmp_rsa_callback(SSL *s, int is_export, int keylength)

{
RSA *rsa_tmp=NULL,;
switch (keylength) {
case 512:
if (rsa_512)
rsa_tmp =rsa_512;
else { /* generate on the fly, should not happen in this example */
rsa_tmp = RSA_generate_key(keylength,RSA_F4 ,NULL,NULL);
rsa_512 =rsa_tmp; /* Remember for later reuse */
}
break;
case 1024:
if (rsa_1024)
rsa_tmp=rsa_1024;
else
should_not_happen_in_this_example();
break;
default:
/* Generating a key on the fly is very costly, so use what is there */
if (rsa_1024)
rsa_tmp=rsa_1024;
else
rsa_tmp=rsa_512; /* Use at least a shorter key */
}
return(rsa_tmp);
}

2001-09-07 345

SSL_CTX set tmp_rsa_callback(3) OpenSSL SSL_CTX set tmp_rsa_callback(3)

RETURN VALUES
SSL_CTX set tmp_rsa_callback@dSSL_set _tmp_rsa_callbacki{) not return diagnostic output.

SSL_CTX set tmp_rsaghd SSL_set_tmp_rsaflo return 1 on success and 0 on failure. Check the
error queue to find out the reason of failure.

SSL_CTX need_tmp_rsaid SSL_need_tmp_rsa@turn 1 if a temporarRSA key is needed and 0
otherwise.

SEE ALSO
ssl(3), SSL_CTX_set_cipher_li&), SSL_CTX_set_optio(), SSL_CTX_set_tmp_dh_callb#8k,
SSL_ne/(3), ciphers(1)

346 2001-09-07 0.9.7c

SSL_CTX_set_verify(3) OpenSSL SSL_CTX_set_verify(3)

NAME
SSL_CTX_ set verify, SSL_set verify, SSL_CTX_set_verify _depth, SSL_set verify_depth — set peer
certificate verification parameters

SYNOPSIS
#include <openssl/ssl.h>

void SSL_CTX_set_verify(SSL_CTX *ctx, int mode,
int (*verify_callback)(int, X509 _STORE_CTX *));
void SSL_set_verify(SSL *s, int mode,
int (*verify_callback)(int, X509 _STORE_CTX *));
void SSL_CTX_set_verify_depth(SSL_CTX *ctx,int depth);
void SSL_set verify_depth(SSL *s, int depth);

int verify_callback(int preverify_ok, X509 _STORE_CTX *x509_ctx);

DESCRIPTION
SSL_CTX_set_verifyets the verification flags fetx to bemode and specifies theerify _callback
function to be used. If no callback function shall be specifiedNtia. pointer can be used faer-
ify_callback.

SSL_set verify@ets the verification flags feslto bemodeand specifies theerify _callback function
to be used. If no callback function shall be specifiedNieL pointer can be used faerify call-

back. In this case lasterify_callback set specifically for thisslremains. If no specialallback was
set before, the default callback for the underlyibgis used, that was valid at the the tisgwas cre-
ated withSSL_newg).

SSL_CTX_ set verify deptls@ts the maximurdepth for the certificate chain verification that shall be
allowed forctx. (See thaBUGS section.)

SSL_set verify_depthéets the maximundepth for the certificate chain verification that shall be
allowed forssl. (See th8UGS section.)

NOTES
The verification of certificates can be controlled by a set of logically otk flags:

SSL_VERIFY_NONE
Server mode:the server will not send a client certificate request to the client, so the client will not
send a certificate.

Client mode: if not using an anonymous cipher (by default disabled), the server will send a cer-
tificate which will be checked. The result of the certificate verification process can be checked
after theTLS/SSLhandshake using tH&SL_get verify_resyl) function. The handshake will be
continued regardless of the verification result.

SSL_VERIFY_PEER
Server mode:the server sends a client certificate request to the client. The certificate returned (if
any) is checked. If the verification process fails,th&/SSLhandshake is immediately terminated
with an alert message containing the reason for the verification failure. The behaviour can be con-
trolled by the additional SSL_VERIFY_FAIL_IF_ NO_PEER_CERT and SSL_VER-
IFY_CLIENT_ONCEflags.

Client mode: the server certificate is verified. If the verification process failsTt8¢SSL hand-

shake is immediately terminated with an alert message containing the reason for the verification
failure. If no server certificate is sent, because an anonymous cipher iS$isedRIFY_PEERS
ignored.

SSL_VERIFY_FAIL_IF_NO_PEER_CERT
Server mode:if the client did not return a certificate, tMeS/SSLhandshake is immediately ter-
minated with a “handshake failure” alert. This flag must be used together S@thVER-
IFY_PEER

Client mode:ignored

0.9.7c 2003-06-26 347

SSL_CTX_set_verify(3) OpenSSL SSL_CTX_set_verify(3)

BUGS

SSL_VERIFY_CLIENT_ONCE
Server mode:only request a client certificate on the iniffalS/SSL handshake. Do not ask for a
client certificate again in case of a renegotiation. This flag must be used togeth®slwitER-
IFY_PEER

Client mode:ignored
Exactly one of thenodeflagsSSL_VERIFY_NONEandSSL_VERIFY_PEERmMust be set at any time.

The actual verification procedure is performed either using the built-in verification procedure or using
another application provided verification function set B8L_CTX_ set cert_verify callbd8k. The
following descriptions apply in the case of the built-in procedure. An application provided procedure
also has access to the verify depth information andséhidy callback()function, but the way this
information is used may be different.

SSL_CTX set verify_deptla)d SSL_set verify _depthget the limit up to which depth certificates in

a chain are used during the verification procedure. If the certificate chain is longer than allowed, the
certificates above the limit are ignored. Error messages are generated as if these certificates would not
be present, most likely a X509 V_ERR_UNABLE_TO_GET _ISSUER_CERT_LOCALLY will be
issued. The depth count is “level O:peer certificate”, “levelCk certificate”, “level 2: higher level

CA certificate”, and so on. Setting the maximum depth to 2 allows the levels 0, 1, and 2. The default

depth limit is 9, allowing for the peer certificate and additiomahZertificates.

The verify_callback function is used to control the behaviour when3Bé_VERIFY_PEERlag is set.

It must be supplied by the application and receives two argunpeaterify ok indicates, whether the
verification of the certificate in question was passed (preverify ok=1) or not (preverify_ok=0).
x509_ctxis a pointer to the complete context used for the certificate chain verification.

The certificate chain is checked starting with the deepest nesting level (theAreettificate) and
worked upward to the peer’s certificate. At each level signatures and issuer attributes are checked.
Whenever a verification error is found, the error number is storg808_ctxandverify_callback is

called with preverify_ok=0. By applying X509 CTX_ store_* functiongerify_callback can locate

the certificate in question and perform additional stepsE2a®&PLES). If no error is found for a cer-
tificate, verify _callback is called withpreverify _ok=1 before advancing to the next level.

The return value ofrerify callback controls the strategy of the further verification processetf

ify _callback returns 0, the verification process is immediately stopped with “verification failed” state.

If SSL_VERIFY_PEERS set, a verification failure alert is sent to the peer andilthsSLhandshake is
terminated. Ifverify_callback returns 1, the verification process is continuedvdfify callback

always returns 1, theLS/SSLhandshake will not be terminated with respect to verification failures and
the connection will be established. The calling process can however retrieve the error code of the last
verification error usingSSL_get verify_resyf8) or by maintaining its own error storage managed by
verify callback.

If no verify_callback is specified, the default callback will be used. lIts return value is identiped-to
verify ok, so that any verification failure will lead to a termination of Th&/SSLhandshake with an
alert message, 8SL_VERIFY_PEERS set.

In client mode, it is not checked whether &L _VERIFY_PEERflag is set, but whethe3SL_VER-
IFY_NONE is not set. This can lead to unexpected behaviour, i68ie VERIFY_PEERandSSL_VER-
IFY_NONE are not used as required (exactly one must be set at any time).

The certificate verification depth set with SSL[_CT¥@rify_depth()stops the verification at a certain
depth. The error message produced will be that of an incomplete certificate chain and not
X509 V_ERR_CERT_CHAIN_TOO_LONG as may be expected.

RETURN VALUES

The SSL*_set_verify*() functions do not provide diagnostic information.

EXAMPLES

348

The following code sequence realizes an exametdy callback function that will always continue
the TLS/SSL handshake regardless of verification failure, if wished. The callback realizes a verification
depth limit with more informational output.

All verification errors are printed, informations about the certificate chain are printed on request. The

2003-06-26 0.9.7c

SSL_CTX_set_verify(3) OpenSSL SSL_CTX_set_verify(3)

example is realized for a server that does allow but not require client certificates.

The exkample makes use of the ex_data technique to store application data into/retrieve application data
from theSSL structure (se&SL_get _ex_new_ind@), SSL_get ex_data_X509 STORE_CTX(3yx

typedef struct {
int verbose_mode;
int verify_depth;
int always_continue;
} mydata t;
int mydata_index;

static int verify_callback(int preverify_ok, X509 _STORE_CTX *ctx)
{

char buf[256];

X509 *err_cert;

int err, depth;

SSL *ssl;

mydata_t *mydata;

err_cert = X509 _STORE_CTX_get_current_cert(ctx);
err = X509_STORE_CTX_get_error(ctx);
depth = X509 _STORE_CTX_get_error_depth(ctx);
/*
* Retrieve the pointer to the SSL of the connection currently treated
* and the application specific data stored into the SSL object.
*/
ssl = X509 _STORE_CTX get_ex_data(ctx, SSL_get ex_data X509 STORE_CTX_idx());
mydata = SSL_get_ex_data(ssl, mydata_index);
X509 NAME_oneline(X509 get_subject_name(err_cert), buf, 256);
/*
* Catch a too long certificate chain. The depth limit set using
SSL_CTX_set_verify_depth() is by purpose set to "limit+1" so
that whenever the "depth>verify_depth" condition is met, we
have violated the limit and want to log this error condition.
We must do it here, because the CHAIN_TOO_LONG error would not
be found explicitly; only errors introduced by cutting off the
additional certificates would be logged.

* % F X * X

*/
if (depth > mydata->verify_depth) {
preverify_ok = 0;
err = X509_V_ERR_CERT_CHAIN_TOO_LONG;
X509 STORE_CTX_set_error(ctx, err);
}
if (!preverify_ok) {
printf("verify error:num=%d:%s:depth=%d:%s\n", err,
X509 verify _cert_error_string(err), depth, buf);
}

else if (mydata->verbose_mode)

printf("depth=%d:%s\n", depth, buf);

0.9.7c 2003-06-26 349

SSL_CTX_set_verify(3) OpenSSL SSL_CTX_set_verify(3)

/*
* At this point, err contains the last verification error. We can use
* jt for something special
*
/
if (Ipreverify_ok && (err == X509 _V_ERR_UNABLE_TO GET_ISSUER_CERT))
{
X509 _NAME_oneline(X509_get_issuer_name(ctx->current_cert), buf, 256);
printf("issuer= %s\n", buf);

}

if (mydata->always_continue)
return 1,

else
return preverify_ok;

mydata_t mydata;
mydata_index = SSL_get_ex_new_index(0, "mydata index", NULL, NULL, NULL);

SSL_CTX_set_verify(ctx, SSL_VERIFY_PEER [BSL_VERIFY_CLIENT_ONCE,
verify_callback);

/*
* Let the verify_callback catch the verify_depth error so that we get
* an appropriate error in the lodfile.
*/

SSL_CTX_ set verify_depth(verify_depth + 1);

/*
* Set up the SSL specific data into "mydata" and store it into th SSL
* structure.
*/

mydata.verify _depth = verify_depth; ...

SSL_set_ex_data(ssl, mydata_index, &mydata);

SSL_accept(ssl); [* check of success left out for clarity */
if (peer = SSL_get_peer_certificate(ssl))
{

if (SSL_get verify _result(ssl) == X509_V_OK)

/* The client sent a certificate which verified OK */

}
}
SEE ALSO
ssl(3), SSL_new3), SSL_CTX get_verify mofR), SSL_get verify_resy83), SSL_CTX_ load_ver-
ify_locationg(3), SSL_get_peer_certificate), SSL_CTX set_cert_verify_callbd8l,

SSL_get _ex_data X509 STORE_CTX3SSL_get_ex_new_ind&®

350 2003-06-26 0.9.7c

SSL_CTX use_certificate(3) OpenSSL SSL_CTX use_certificate(3)

NAME

SSL_CTX use_certificate, SSL_CTX use_certificate_ ASN1, SSL_CTX use_certificate_file,
SSL_use_certificate, SSL_use_certificate_ ASN1, SSL use_certificate_file, SSL_CTX_ use_certifi-
cate_chain_file, SSL_CTX use_PrivateKey, SSL_CTX use_PrivateKey ASN1, SSL CTX_ use_Pri-
vateKey file, SSL_CTX use_RSAPrivateKey, SSL_CTX use_RSAPrivateKey ASN1,
SSL_CTX use_RSAPrivateKey file, SSL_use_PrivateKey file, SSL_use_PrivateKey ASN1,
SSL _use_ PrivateKey, SSL_use RSAPrivateKey, SSL_use RSAPrivateKey ASN1, SSL use RSAPri-
vateKey file, SSL_CTX check_private_key, SSL_check private_key — load certificate and key data

SYNOPSIS
#include <openssl/ssl.h>

int SSL_CTX use_certificate(SSL_CTX *ctx, X509 *x);

int SSL_CTX use_certificate. ASN1(SSL_CTX *ctx, int len, unsigned char *d);
int SSL_CTX use_certificate_file(SSL_CTX *ctx, const char *file, int type);

int SSL_use_certificate(SSL *ssl, X509 *x);

int SSL_use_certificate_ ASN1(SSL *ssl, unsigned char *d, int len);

int SSL_use_certificate_file(SSL *ssl, const char *file, int type);

int SSL_CTX use_certificate_chain_file(SSL_CTX *ctx, const char *file);

int SSL_CTX use_PrivateKey(SSL_CTX *ctx, EVP_PKEY *pkey);

int SSL_CTX use_PrivateKey ASN1(int pk, SSL_CTX *ctx, unsigned char *d,
long len);

int SSL_CTX use_PrivateKey_file(SSL_CTX *ctx, const char *file, int type);

int SSL_CTX _use_RSAPrivateKey(SSL_CTX *ctx, RSA *rsa);

int SSL_CTX use_RSAPrivateKey ASN1(SSL_CTX *ctx, unsigned char *d, long len);

int SSL_CTX use_RSAPrivateKey_file(SSL_CTX *ctx, const char *file, int type);

int SSL_use_PrivateKey(SSL *ssl, EVP_PKEY *pkey);

int SSL_use_PrivateKey_ASN1(int pk,SSL *ssl, unsigned char *d, long len);

int SSL_use_PrivateKey_file(SSL *ssl, const char *file, int type);

int SSL_use_RSAPrivateKey(SSL *ssl, RSA *rsa);

int SSL_use_ RSAPrivateKey ASN1(SSL *ssl, unsigned char *d, long len);

int SSL_use RSAPrivateKey_file(SSL *ssl, const char *file, int type);

int SSL_CTX_ check private_key(SSL_CTX *ctx);
int SSL_check_private_key(SSL *ssl);

DESCRIPTION
These functions load the certificates and private keys int83heCTXor SSLobject, respectively.

The SSL_CTX_* class of functions loads the certificates and keys int®8StheCTX objectctx. The
information is passed t8SL objectssslcreated fronttx with SSL_new3) by copying, so that changes
applied toctx do not propagate to already existi®gL objects.

The SSL_* class of functions only loads certificates and keys into a spgifizbject. The specific
information is kept, wheBSL_clea(3) is called for thisSSLobject.

SSL_CTX use_certificatd@ads the certificat& into ctx, SSL_use_certificate(padsx into ssl. The
rest of the certificates needed to form the complete certificate chain can be specified using the
SSL_CTX add_extra_chain_c€3} function.

SSL_CTX use_certificate ASNIdads theASN1 encoded certificate from the memory locatidn
(with lengthlen) into ctx, SSL_use_certificate_ ASNIgads theASN1 encoded certificate intgsl

SSL_CTX use_certificate_filégads the first certificate storedfite into ctx. The formattingtype of

the certificate must be specified from the known typ®8s FILETYPE_PEM SSL_FILETYPE_ASN1

SSL_use_certificate_file(pads the certificate fronfile into ssl. See theNOTES section on why
SSL_CTX use_certificate_chain_filgifpuld be preferred.

SSL_CTX use_certificate_chain_fill@ds a certificate chain frofile into ctx. The certificates must

be inPEM format and must be sorted starting with the subject’s certificate (actual client or server cer-
tificate), followed by intermediat€A certificates if applicable, and ending at the highest level (root)
CA. There is no corresponding function working on a sisgeobject.

0.9.7c 2003-05-30 351

SSL_CTX use_certificate(3) OpenSSL SSL_CTX use_certificate(3)

SSL_CTX use_Privatelf() addspkey as private key totx. SSL_CTX_ use_ RSAPrivateKegqs the
private keyrsa of type RSA to ctx. SSL _use_ PrivateKey(@dds pkey as private key tossl;
SSL_use_ RSAPrivateKeg(Jdsrsa as private key of typRSAto ssl

SSL_CTX use_PrivateKey ASNddyls the private key of typak stored at memory locatiah(length
len) toctx. SSL_CTX_use_RSAPrivateKey ASHNi)s the private key of typ@SA stored at memory
locationd (lengthlen) toctx. SSL_use_PrivateKey ASNaf)dSSL_use RSAPrivateKey ASNidJ
the private key taesl.

SSL_CTX use_PrivateKey _file@ds the first private key found fite to ctx. The formattingtype of
the certificate must be specified from the known typ8s FILETYPE_PEM SSL_FILETYPE_ASN1
SSL_CTX use_RSAPrivateKey_fiedps the first privat@SA key found infile to ctx. SSL_use_Pri-
vateKey _file(rdds the first private key foundfite to sst SSL_use_RSAPrivateKey _fila@ds the first
privateRSA key found tossl.

SSL_CTX check_private_kegflecks the consistency of a private key with the corresponding certifi-
cate loaded intatx. If more than one key/certificate paiRSA/DSA) is installed, the last item installed
will be checked. If e.g. the last item waf@A certificate or key, th&®SA key/certificate pair will be
checkedSSL_check private keyfgrforms the same check fssl. If no key/certificate was explicitly
added for thissl, the last item added inttx will be checked.

NOTES
The internal certificate store of OpenSSL can hold two private key/certificate pairs at a time: one
key/certificate of typeRSA and one key/certificate of tyg@SA. The certificate used depends on the
cipher select, see al§5L_CTX_set_cipher_li®).

When reading certificates and private keys from file, files of 8fe FILETYPE_ASN1(also known as
DER, binary encoding) can only contain one certificate or private key, conseq88hthCTX use_cer-
tificate_chain_file(Js only applicable t&®®EM formatting. Files of typeSsSL_FILETYPE_PEMcan con-
tain more than one item.

SSL_CTX use_certificate_chain_fila@ds the first certificate found in the file to the certificate store.
The other certificates are added to the store of chain certificates using
SSL_CTX add_extra_chain_c€}. There exists only one extra chain store, so that the same chain is
appended to both types of certificateSA andDSA! If it is not intended to use both type of certificate

at the same time, it is recommended to useSBe CTX_ use_certificate_chain_file(3tead of the
SSL_CTX use_certificate_filé(nction in order to allow the use of complete certificate chains even
when no trustedCA storage is used or when thla issuing the certificate shall not be added to the
trustedCA storage.

If additional certificates are needed to complete the chain duringLgheegotiation,CA certificates
are additionally looked up in the locations of trustdcertificates, se§SL_CTX_load_verify loca-
tions(3).

The private keys loaded from file can be encrypted. In order to successfully load encrypted keys, a
function returning the passphrase must have been supplie8Ste€TX set default_passwd(Zh
(Certificate files might be encrypted as well from the technical point of view, it however does not make
sense as the data in the certificate is considered public anyway.)

RETURN VALUES
On success, the functions return 1. Otherwise check out the error stack to find out the reason.

SEE ALSO
ssl(3), SSL_newd), SSL_clea(3), SSL_CTX load_verify_locatio(®),
SSL_CTX set_default_passwd(2p SSL_CTX_set_cipher_li&), SSL_CTX_set_client_cert (3),
SSL_CTX add_extra_chain_cf3}

352 2003-05-30 0.9.7c

SSL_do_handshake(3) OpenSSL SSL_do_handshake(3)

NAME

SSL_do_handshake — perform a TLS/SSL handshake

SYNOPSIS

#include <openssl/ssl.h>
int SSL_do_handshake(SSL *ssl);

DESCRIPTION

SSL_do_handshakegill wait for a SSL/TLS handshake to take place. If the connection is in client
mode, the handshake will be started. The handshake routines may have to be explicitly set in advance
using eithelSSL_set_connect_st48 orSSL_set_accept_std®).

NOTES

The behaviour 08SL_do_handshakedgpends on the underlyiBjO.

If the underlyingBIO is blocking, SSL_do_handshakegjll only return once the handshake has been
finished or an error occurred, except 8%8C (Server Gated Cryptography). F86C SSL_do_hand-
shake()may return with =1, buSSL_get_error(will yield SSL_ERROR_WANT_READ/WRITE and
SSL_do_handshakefpould be called again.

If the underlyingBIO is non-blocking, SSL_do_handshakegjill also return when the underlyirgyO

could not satisfy the needs 86L_do_handshaket) continue the handshake. In this case a call to
SSL_get_error(with the return value o8SL_do_handshakeg)ill yield SSL_ ERROR_WANT_READ

or SSL_ERROR_WANT_WRITE. The calling process then must repeat the call after taking appropriate
action to satisfy the needs 86L_do_handshake(Jhe action depends on the underlyBi®. When

using a non-blocking socket, nothing is to be donesblgct()can be used to check for the required
condition. When using a bufferirgJO, like aBIO pair, data must be written into or retrieved out of the
BIO before being able to continue.

RETURN VALUES

The following return values can occur:
1 TheTLS/SSLhandshake was successfully completed, &SSLconnection has been established.

 TheTLS/SSLhandshake was not successful but was shut down controlled and by the specifications
of theTLS/SSLprotocol. CallSSL_get_error(vith the return valueet to find out the reason.

<0 TheTLS/SSL handshake was not successful because a fatal error occurred either at the protocol
level or a connection failure occurred. The shutdown was not clean. It can also occur of action is
need to continue the operation for non-blocking BlOs. 88IL_get_error(ith the return value
ret to find out the reason.

SEE ALSO

0.9.7c

SSL_get_errof3), SSL_conne¢B), SSL_accefB), ssl(3), bio(3), SSL_set_connect_std8)

2002-07-19 353

SSL_free(3) OpenSSL SSL_free(3)

NAME
SSL_free - free an allocated SSL structure

SYNOPSIS
#include <openssl/ssl.h>

void SSL_free(SSL *ssl);

DESCRIPTION
SSL_free(decrements the reference counssf, and removes th&SL structure pointed to bgsland
frees up the allocated memory if the the reference count has reached O.

NOTES
SSL_free(plso calls thdree()ing procedures for indirectly affected items, if applicable: the buffering
BIO, the read and write BIOs, cipher lists specially created forslistheSSL_SESSION Do not
explicitly free these indirectly freed up items before or after callisg_free(), as trying to free things
twice may lead to program failure.

The ssl session has reference counts from two userssthebject, for which the reference count is
removed bySSL free()and the internal session cache. If the session is considered bad, because
SSL_shutdowf8) was not called for the connection é88L_set shutdowB) was not used to set the
SSL_SENT_SHUTDOWNstate, the session will also be removed from the session cache as required by
RFC2246

RETURN VALUES
SSL_free(Hloes not provide diagnostic information.

SSL_new3), SSL_clea(3), SSL_shutdowfB), SSL_set_shutdow8), ssl(3)

354 2001-02-13 0.9.7c

SSL_get _ciphers(3) OpenSSL SSL_get_ciphers(3)

NAME
SSL_get ciphers, SSL_get_cipher_list — get list of available SSL_CIPHERS

SYNOPSIS
#include <openssl/ssl.h>

STACK_OF(SSL_CIPHER) *SSL_get_ciphers(SSL *ssl);
const char *SSL_get _cipher_list(SSL *ssl, int priority);

DESCRIPTION
SSL_get_ciphersfeturns the stack of available SSL_CIPHERsdslr sorted by preference. d§lis
NULL or no ciphers are availabeULL is returned.

SSL_get_cipher_listfeturns a pointer to the name of tB8L_CIPHERIlisted for sslwith priority. If
sslis NULL, no ciphers are available, or there are less ciphersptianity available NULL is returned.

NOTES
The details of the ciphers obtained b8SL_get ciphers()can be obtained using the
SSL_CIPHER_get_nar(® family of functions.

Call SSL_get_cipher_listfjith priority starting from 0 to obtain the sorted list of available ciphers,
until NULL is returned.

RETURN VALUES
SeeDESCRIPTION

SEE ALSO
ssl(3), SSL_CTX_set_cipher_li&), SSL_CIPHER_get nar(®

0.9.7c 2000-09-18 355

SSL_get _client_CA _list(3) OpenSSL SSL_get_client_CA _list(3)

NAME
SSL_get client_CA list, SSL_CTX get client_ CA_list — get list of client CAs

SYNOPSIS
#include <openssl/ssl.h>
STACK_OF(X509_NAME) *SSL_get_client_ CA_list(SSL *s);
STACK_OF(X509_NAME) *SSL_CTX_ get_client_ CA_list(SSL_CTX *ctx);
DESCRIPTION

SSL_CTX get client_CA list(Jeturns the list of client CAs explicitly set foctx using
SSL_CTX set_client_ CA_I{8).

SSL_get _client CA list()returns the list of client CAs explicitly set forssl using
SSL_set_client_CA_list(pr sslI's SSL_CTX object with SSL_CTX_set _client CA_I{8), when in
server mode. In client mode, SSL_get_client_CA_list returns the list of client CAs sent from the server,
if any.

RETURN VALUES
SSL_CTX set_client_ CA_lisHpdSSL_set_client_ CA_listlo not return diagnostic information.

SSL_CTX add_client CApdSSL_add_client_ CApave the following return values:

STACK_ORX509_NAMES)
List of CA names explicitly set (fartx or in server mode) or send by the server (client mode).

NULL
No clientCA list was explicitly set (foctx or in server mode) or the server did not send a list of
CAs (client mode).

SEE ALSO
ssl(3), SSL_CTX_set_client CA_{8), SSL_CTX_set_client_cert (3)

356 2002-02-15 0.9.7c

SSL_get_current_cipher(3) OpenSSL SSL_get_current_cipher(3)

NAME
SSL_get_current_cipher, SSL_get _cipher, SSL_get_cipher_name, SSL_get_cipher_bits,
SSL_get _cipher_version — get SSL_CIPHER of a connection

SYNOPSIS
#include <openssl/ssl.h>

SSL_CIPHER *SSL_get_current_cipher(SSL *ssl);
#define SSL_get_cipher(s) \

SSL_CIPHER_get name(SSL_get_current_cipher(s))
#define SSL_get_cipher_name(s) \

SSL_CIPHER_get name(SSL_get_current_cipher(s))
#define SSL_get_cipher_bits(s,np) \

SSL_CIPHER_get bits(SSL_get_current_cipher(s),np)
#define SSL_get_cipher_version(s) \

SSL_CIPHER_get version(SSL_get_current_cipher(s))

DESCRIPTION
SSL_get_current_cipherfgturns a pointer to aBSL_CIPHERobject containing the description of the
actually used cipher of a connection established witlsghabject.

SSL_get_cipher@ndSSL_get_cipher_namedje identical macros to obtain the name of the currently
used cipherSSL_get cipher_bits(3 a macro to obtain the number of secret/algorithm bits used and
SSL_get_cipher_version@turns the protocol name. S88L_CIPHER_get nan(®) for more details.

RETURN VALUES
SSL_get_current_cipher(eturns the cipher actually used WLL, when no session has been estab-
lished.

SEE ALSO
ssl(3), SSL_CIPHER_get _nan(®

0.9.7c 2000-09-18 357

SSL_get_default_timeout(3) OpenSSL SSL_get_default_timeout(3)

NAME
SSL_get_default_timeout — get default session timeout value

SYNOPSIS
#include <openssl/ssl.h>

long SSL_get_default_timeout(SSL *ssl);

DESCRIPTION
SSL_get_default_timeout@turns the default timeout value assigne$$t_SESSIONobjects negoti-
ated for the protocol valid fasl.

NOTES

Whenever a new session is negotiated, it is assigned a timeout value, after which it will not be accepted
for session reuse. If the timeout value was not explicitly set &8ilg CTX_ set_timed®), the hard-
coded default timeout for the protocol will be used.

SSL_get_default_timeout(@turn this hardcoded value, which is 300 seconds for all currently sup-
ported protocols (SSLv2, SSLv3, and TLSv1).

RETURN VALUES
See description.
SEE ALSO

ssl(3), SSL_CTX set session_cache nf8jle SSL_SESSION get tif®, SSL_CTX flush_ses-
sions(3), SSL_get_default_timeo(®)

358 2001-08-17 0.9.7c

SSL_get_error(3) OpenSSL SSL_get_error(3)

NAME
SSL_get_error — obtain result code for TLS/SSL I/O operation

SYNOPSIS
#include <openssl/ssl.h>

int SSL_get_error(SSL *ssl, int ret);

DESCRIPTION
SSL_get_error(yeturns a result code (suitable for the C “switch” statement) for a preceding call to
SSL_connect()SSL_accept()SSL_do_handshake(@SL_read() SSL_peek(), o6SL_write()on ssl
The value returned by thatS/SSLI/O function must be passed$&L_get_error()n parameteret.

In addition tosslandret, SSL_get_error()nspects the current thread’s OpenSSL error queue. Thus,
SSL_get_error(must be used in the same thread that performedtB&SL I/0O operation, and no

other OpenSSL function calls should appear in between. The current thread’s error queue must be
empty before th&LS/SSLI/O operation is attempted, 8SL_get_error(yill not work reliably.

RETURN VALUES
The following return values can currently occur:

SSL_ERROR_NONE
TheTLS/SSLI/O operation completed. This result code is returned if and ondy ¥ 0.

SSL_ERROR_ZERO_RETURN
TheTLS/SSLconnection has been closed. If the protocol versi@sis3.0 orTLS 1.0, this result
code is returned only if a closure alert has occurred in the protocol, i.e. if the connection has been
closed cleanly. Note that in this ca&8L_ERROR_ZERO_RETURN does not necessarily indicate
that the underlying transport has been closed.

SSL_ERROR_WANT_READSSL_ERROR_WANT_WRITE
The operation did not complete; the sarh&/SSLI/O function should be called again later. If, by
then, the wunderlyingBIO has data available for reading (if the result code is
SSL_ERROR_WANT_READ) or allows writing data $SL_ERROR_WANT_WRITE), then some
TLS/SSL protocol progress will take place, i.e. at least part oflz8/SSLrecord will be read or
written. Note that the retry may again lead to $SL_ERROR_WANT_READ or
SSL_ERROR_WANT_WRITE condition. There is no fixed upper limit for the number of iterations
that may be necessary until progress becomes visible at application protocol level.

For sockeBIOs (e.g. wherSSL_set_fd(vas used)select()or poll() on the underlying socket can
be used to find out when theS/SSLI/O function should be retried.

Caveat: Any TLS/SSL I/O function can lead to either ofSL_ERROR_WANT_READ and
SSL_ERROR_WANT_WRITE. In particular,SSL_read(Jor SSL_peek(jnay want to write data
andSSL_write(Jmay want to read data. This is mainly becalls&SSLhandshakes may occur at
any time during the protocol (initiated by either the client or the ser8&i); read()SSL_peek(),
andSSL_write(will handle any pending handshakes.

SSL_ERROR_WANT_CONNECTSSL_ERROR_WANT_ACCEPT
The operation did not complete; the sam&/SSLI/O function should be called again later. The
underlyingBIO was not connected yet to the peer and the call would blocérinect()/accept()
The SSL function should be called again when the connection is established. These messages can
only appear with &8I0_s_connect(pr BIO_s_accept(BIO, respectively. In order to find out,
when the connection has been successfully established, on many plaébeat§)or poll() for
writing on the socket file descriptor can be used.

SSL_ERROR_WANT_X509 LOOKUP
The operation did not complete because an application callback set by
SSL_CTX_set_client_cert_cl@s asked to be called again. Th/SSLI/O function should be
called again later. Details depend on the application.

SSL_ERROR_SYSCALL
Some I/O error occurred. The OpenSSL error queue may contain more information on the error.
If the error queue is empty (i.ERR_get_error(yeturns 0)yet can be used to find out more about
the error: Ifret == 0, anEOFwas observed that violates the protocolrelf== -1, the underlying

0.9.7c 2002-07-29 359

SSL_get_error(3) OpenSSL SSL_get_error(3)

BIO reported an I/O error (for soekl/O on Unix systems, consltrno for details).

SSL_ERROR_SSL
A failure in theSSL library occurred, usually a protocol error. The OpenSSL error queue contains
more information on the error.

SEE ALSO
ssl(3), err (3)

HISTORY
SSL_get_error(jvas added in SSLeay 0.8.

360 2002-07-29 0.9.7c

SSL_get _ex_data_ X509 STORE_CTX_idx(3) OpenSSL SSL_get_ex_data_ X509 STORE_CTX_idx(3)

NAME
SSL_get ex_data_ X509 STORE_CTX idx - get ex _data index to access SSL structure from
X509 _STORE_CTX

SYNOPSIS
#include <openssl/ssl.h>

int SSL_get_ex_data_X509 STORE_CTX idx(void);

DESCRIPTION
SSL_get_ex_data X509 _STORE_CTX itbt{)rns the index number under which the pointer to the
SSLobject is stored into the X509 STORE_CTX object.

NOTES
Whenever a X509 _STORE_CTX object is created for the verification of the peers certificate during a
handshake, a pointer to tBSL object is stored into the X509 _STORE_CTX object to identify the con-
nection affected. To retrieve this pointer K609 STORE_CTX_get ex_dath(jction can be used
with the correct index. This index is globally the same for all X509 STORE_CTX objects and can be
retrieved using SSL_get ex data X509 STORE_CTX .idx{The index value is set when
SSL_get_ex_data X509 STORE_CTX idxiiyst called either by the application program directly or
indirectly during othesSL setup functions or during the handshake.

The value depends on other index values defined for X509 STORE_CTX objects be&seititex
is created.

RETURN VALUES
>=0
The index value to access the pointer.

<0 An error occurred, check the error stack for a detailed error message.

EXAMPLES
The index returned from$SL_get _ex_data X509 STORE_CTX idHh@ws to access th8SL object
for the connection to be accessed during waefy callback()when checking the peers certificate.
Please check the exampledBL_CTX_set_verig),

SEE ALSO
ssl(3), SSL_CTX_set_verif@), CRYPTO_set_ex_data)

0.9.7c 2001-01-20 361

SSL_get_ex_new_index(3) OpenSSL SSL_get_ex_new_index(3)

NAME
SSL_get _ex_new_index, SSL_set _ex_data, SSL_get_ex_data - internal application specific data func-

tions

SYNOPSIS
#include <openssl/ssl.h>

int SSL_get_ex_new_index(long argl, void *argp,
CRYPTO_EX_ new *new_func,
CRYPTO_EX_ dup *dup_func,
CRYPTO_EX free *free_func);

int SSL_set_ex_data(SSL *ssl, int idx, void *arg);

void *SSL_get_ex_data(SSL *ssl, int idx);

typedef int new_func(void *parent, void *ptr, CRYPTO_EX_ DATA *ad,
int idx, long argl, void *argp);

typedef void free_func(void *parent, void *ptr, CRYPTO_EX_DATA *ad,
int idx, long argl, void *argp);

typedef int dup_func(CRYPTO_EX_ DATA *to, CRYPTO_EX_DATA *from, void *from_d,
int idx, long argl, void *argp);

DESCRIPTION
Several OpenSSL structures can have application specific data attached to them. These functions are

used internally by OpenSSL to manipulate application specific data attached to a specific structure.
SSL_get_ex_new_indeig)used to register a new index for application specific data.
SSL_set_ex_dataf used to store application dataagd for idx into thesslobject.

SSL_get_ex_datai§ used to retrieve the information fdx from ssl

A detailed description for the* get ex new index() functionality can be found in
RSA_get ex new_ind@). The* get ex data() and *_set ex data() functionality is described in
CRYPTO_set_ex_dafd).

EXAMPLES
An example on how to use the functionality is included in the examptdy callback() in
SSL_CTX_ set veri(®).

SEE ALSO
ssl(3), RSA_get _ex_new_ind@), CRYPTO_set ex dafd), SSL_CTX_set_verifg)

362 2001-05-14 0.9.7c

SSL_get fd(3) OpenSSL SSL_get_fd(3)

NAME
SSL_get fd — get file descriptor linked to an SSL object

SYNOPSIS
#include <openssl/ssl.h>
int SSL_get fd(SSL *ssl);
int SSL_get_rfd(SSL *ssl);
int SSL_get wfd(SSL *ssl);
DESCRIPTION
SSL_get_fd(deturns the file descriptor which is linkedgssl SSL_get rfd(andSSL_get wfd(jeturn

the file descriptors for the read or the write channel, which can be different. If the read and the write
channel are differen§SL_get_fd@vill return the file descriptor of the read channel.

RETURN VALUES
The following return values can occur:

-1 The operation failed, because the underlyiQ is not of the correct type (suitable for file
descriptors).

>=0
The file descriptor linked tssl

SEE ALSO
SSL_set f(B), ssl(3) , bio(3)

0.9.7c 2000-09-16 363

SSL_get _peer_cert_chain(3) OpenSSL SSL_get _peer_cert_chain(3)

NAME
SSL_get _peer_cert_chain — get the X509 certificate chain of the peer

SYNOPSIS
#include <openssl/ssl.h>

STACKOF(X509) *SSL_get_peer_cert_chain(SSL *ssl);

DESCRIPTION
SSL_get_peer_cert_chain(@turns a pointer t&TACKORX509) certificates forming the certificate
chain of the peer. If called on the client side, the stack also contains the peer’s certificate; if called on
the server side, the peer’s certificate must be obtained separatel\z8&inget peer_certificaf®). If
the peer did not present a certificatelLL is returned.

NOTES

The peer certificate chain is not necessarily available after reusing a session, in whiciNgakse a
pointer is returned.

The reference count of tlBTACKORX509) object is not incremented. If the corresponding session is
freed, the pointer must not be used any longer.

RETURN VALUES
The following return values can occur:

NULL
No certificate vas presented by the peer or no connection was established or the certificate chain is
no longer available when a session is reused.

Pointer to &sTACKORX509)
The return value points to the certificate chain presented by the peer.

SEE ALSO
ssl(3), SSL_get_peer_certificate)

364 2001-02-16 0.9.7c

SSL_get _peer_certificate(3) OpenSSL SSL_get_peer_certificate(3)

NAME
SSL_get_peer_certificate — get the X509 certificate of the peer

SYNOPSIS
#include <openssl/ssl.h>

X509 *SSL_get_peer_certificate(SSL *ssl);

DESCRIPTION
SSL_get_peer_certificata@turns a pointer to the X509 certificate the peer presented. If the peer did
not present a certificateULL is returned.

NOTES
Due to the protocol definition, BLS/SSLserver will always send a certificate, if present. A client will
only send a certificate when explicitly requested to do so by the serv&3ke€TX_set_veri(@)). If
an anonymous cipher is used, no certificates are sent.

That a certificate is returned does not indicate information about the verification st&8|luget ver-
ify_result(3) to check the verification state.

The reference count of the X509 object is incremented by one, so that it will not be destroyed when the
session containing the peer certificate is freed. The X509 object must be explicitly freed using
X509 free()

RETURN VALUES
The following return values can occur:

NULL
No certificate was presented by the peer or no connection was established.

Pointer to an X509 certificate
The return value points to the certificate presented by the peer.

SEE ALSO
ssl(3), SSL_get_verify resyB), SSL_CTX_set veri@)

0.9.7c 2001-09-07 365

SSL_get rbio(3) OpenSSL SSL_get_rhio(3)

NAME
SSL_get rbio — get BIO linked to an SSL object

SYNOPSIS
#include <openssl/ssl.h>
BIO *SSL_get rbio(SSL *ssl);
BIO *SSL_get wbio(SSL *ssl);
DESCRIPTION

SSL_get_rbio(andSSL_get_wbio@eturn pointers to the BIOs for the read or the write channel, which
can be different. The reference count of@ih@ is not incremented.

RETURN VALUES
The following return values can occur:

NULL
No BIO was connected to th&SL object

Any other pointer
TheBIO linked tossl.

SEE ALSO
SSL_set_hiB), ssl(3) , bio(3)

366 2000-09-16 0.9.7c

SSL_get_session(3) OpenSSL SSL_get_session(3)

NAME

SSL_get_session - retrieve TLS/SSL session data

SYNOPSIS

#include <openssl/ssl.h>

SSL_SESSION *SSL_get_session(SSL *ssl);
SSL_SESSION *SSL_get0_session(SSL *ssl);
SSL_SESSION *SSL_getl _session(SSL *ssl);

DESCRIPTION

SSL_get_session(@turns a pointer to th&SL_SESSIONactually used irssl The reference count of
the SSL_SESSIONIs not incremented, so that the pointer can become invalid by other operations.

SSL_get0_sessiong)the same aSSL_get _session()

SSL_getl session§ the same aSSL_get_session@ut the reference count of tIsSL_SESSIONis
incremented by one.

NOTES

The ssl session contains all information required to re-establish the connection without a new hand-
shake.

SSL_get0_session@turns a pointer to the actual session. As the reference counter is not incremented,
the pointer is only valid while the connection is in useSHL._clea(3) or SSL_fre€3) is called, the
session may be remed completely (if considered bad), and the pointer obtained will become invalid.
Even if the session is valid, it can be removed at any time due to timeout 8&ingCTX flush_ses-
sions(3).

If the data is to be kepSL_getl sessiongjill increment the reference count, so that the session will
not be implicitly removed by other operations but stays in memory. In order to remove the session
SSL_SESSION_fré®) must be explicitly called once to decrement the reference count again.

SSL_SESSIONbbjects keep internal link information about the session cache list, when being inserted
into oneSSL_CTXobject’s session cache. OB8L_SESSIONobject, regardless of its reference count,
must therefore only be used with oB®L_CTXobject (and th&SL objects created from th&SL_CTX
object).

RETURN VALUES

The following return values can occur:

NULL
There is no session availablessi

Pointer to arsSL
The return value points to the data ofs8isession.

SEE ALSO

0.9.7c

ssl(3), SSL_fre€3), SSL_clea(3), SSL_SESSION_fré®)

2001-11-19 367

SSL_get SSL_CTX(3) OpenSSL SSL_get_ SSL_CTX(3)

NAME
SSL_get SSL_CTX - get the SSL_CTX from which an SSL is created

SYNOPSIS
#include <openssl/ssl.h>
SSL_CTX*SSL_get SSL_CTX(SSL *ssl);

DESCRIPTION

SSL_get SSL_CTX(eturns a pointer to th&€SL_CTX object, from whichssl was created with
SSL_newd).

RETURN VALUES
The pointer to th&SL_CTXobject is returned.

SEE ALSO
ssl(3), SSL_newR)

368 2001-08-17 0.9.7c

SSL_get verify_result(3) OpenSSL SSL_get_verify_result(3)

NAME
SSL_get verify_result — get result of peer certificate verification

SYNOPSIS
#include <openssl/ssl.h>

long SSL_get_verify_result(SSL *ssl);

DESCRIPTION
SSL_get verify resultfeturns the result of the verification of the X509 certificate presented by the
peer, if any.

NOTES
SSL_get_verify_resultfan only return one error code while the verification of a certificate can fail
because of many reasons at the same time. Only the last verification error that occurred during the pro-
cessing is available fro®SL_get verify result()

The verification result is part of the established session and is restored when a session is reused.

BUGS
If no peer certificate was presented, the returned result code is X509 V_OK. This is because no verifi-
cation error occurred, it does however not indicate suc&sis. get verify _result{y only useful in
connection witlSSL_get_peer_certificate).

RETURN VALUES
The following return values can currently occur:

X509 _V_OK
The verification succeeded or no peer certificate was presented.

Any other value
Documented iverify(1).

SEE ALSO
ssl(3), SSL_set_verify_resR), SSL_get_peer_certificat®), verify(1)

0.9.7c 2001-02-16 369

SSL_get version(3) OpenSSL SSL_get_version(3)

NAME
SSL_get_version — get the protocol version of a connection.

SYNOPSIS
#include <openssl/ssl.h>

const char *SSL_get_version(SSL *ssl);
DESCRIPTION
SSL_get_cipher_version@turns the name of the protocol used for the connessibn
RETURN VALUES
The following strings can occur:

SSLv2
The connection uses the SSLv2 protocol.

SSLv3
The connection uses the SSLv3 protocol.

TLSv1
The connection uses the TLSv1 protocol.

unknown
This indicates that no version has been set (no connection established).

SEE ALSO
ssl(3)

370 2001-02-23 0.9.7c

SSL_library_init(3) OpenSSL SSL_library_init(3)

NAME
SSL_library_init, OpenSSL_add_ssl_algorithms, SSLeay add_ssl_algorithms - initialize SSL library
by registering algorithms
SYNOPSIS
#include <openssl/ssl.h>
int SSL_library_init(void);
#define OpenSSL_add_ssl_algorithms() SSL_library_init()
#define SSLeay_add_ssl_algorithms() SSL_library_init()

DESCRIPTION
SSL_library_init(registers the available ciphers and digests.

OpenSSL_add_ssl_algorithms() and SSLeay_add_ssl_algorithms() are synonyms for
SSL_library_init()

NOTES
SSL_library_init()must be called before any other action takes place.

WARNING
SSL _library_init()only registers ciphers. Another important initialization is the seeding aPRING
(Pseudo Random Number Generator), which has to be performed separately.

EXAMPLES
A typical TLS/SSLapplication will start with the library initialization, will provide readable error mes-
sages and will seed tIRRNG

SSL_load_error_strings(); [* readable error messages */
SSL_library_init(); [* initialize library */
actions_to_seed_ PRNG();
RETURN VALUES
SSL _library_init(always returns “1”, so it is safe to discard the return value.

SEE ALSO
ssl(3), SSL_load_error_string8), RAND_add?3)

0.9.7c 2000-09-21 371

SSL_load_client_CA _file(3) OpenSSL SSL_load_client_CA _file(3)

NAME
SSL_load_client_CA_file - load certificate names from file

SYNOPSIS
#include <openssl/ssl.h>

STACK_OF(X509_NAME) *SSL_load_client_CA _file(const char *file);

DESCRIPTION
SSL_load_client_CA_filefads certificates froifile and returns STACK_ORX509 NAME) with the
subject names found.

NOTES
SSL _load_client_CA _filefeads a file oPEM formatted certificates and extracts the X509 NAMES of
the certificates found. While the name suggests the specific usage as support function for
SSL_CTX_ set_client_CA_[{8), it is not limited taCA certificates.

EXAMPLES
Load names of CAs from file and use it as a cligxtist:

SSL_CTX *ctx;
STACK_OF(X509 _NAME) *cert_names;

cert_names = SSL_load_client_CA _file("/path/to/CAfile.pem");
if (cert_names != NULL)

SSL_CTX set_client_CA_list(ctx, cert_names);
else

error_handling();

RETURN VALUES
The following return values can occur:

NULL
The operation failed, check out the error stack for the reason.

Pointer toSTACK_OR X509 NAME)
Pointer to the subject names of the successfully read certificates.

SEE ALSO
ssl(3), SSL_CTX_set_client CA_I{8)

372 2000-10-04 0.9.7c

SSL_new(3) OpenSSL SSL_new(3)

NAME
SSL_new - create a new SSL structure for a connection

SYNOPSIS
#include <openssl/ssl.h>
SSL *SSL_new(SSL_CTX *ctx);

DESCRIPTION
SSL_new(Ereates a ne8SL structure which is needed to hold the data foL&SSLconnection. The
new structure inherits the settings of the underlying contekt: connection method
(SSLv2/v3/TLSv1), options, verification settings, timeout settings.

RETURN VALUES
The following return values can occur:

NULL
The creation of a ne®SL structure failed. Check the error stack to find out the reason.

Pointer to arsSL structure
The return value points to an allocatsl structure.

SEE ALSO
SSL_fre€3), SSL_clea(3),SSL_CTX_ set_optio3), SSL_get SSL_CT3), ssl(3)

0.9.7c 2001-08-17 373

SSL_pending(3) OpenSSL SSL_pending(3)

NAME
SSL_pending - obtain number of readable bytes buffered in an SSL object

SYNOPSIS
#include <openssl/ssl.h>

int SSL_pending(SSL *ssl);
DESCRIPTION
SSL_pending(eturns the number of bytes which are available inséti®r immediate read.

NOTES

Data are received in blocks from the peer. Therefore data can be bufferedssisidé are ready for
immediate retrieval witlsSL_read3).

RETURN VALUES
The number of bytes pending is returned.

BUGS
SSL_pending(akes into account only bytes from theS/SSLrecord that is currently being processed
(if any). If theSSL object’'sread_aheadlag is set, additional protocol bytes may have been read con-
taining moreTLS/SSLrecords; these are ignored $$L_pending()

Up to OpenSSL 0.9.&SL_pending(@@oes not check if the record type of pending data is application
data.

SEE ALSO
SSL_read3), ssl(3)

374 2000-12-25 0.9.7c

SSL_read(3) OpenSSL SSL_read(3)

NAME
SSL_read - read bytes from a TLS/SSL connection.

SYNOPSIS
#include <openssl/ssl.h>

int SSL_read(SSL *ssl, void *buf, int num);

DESCRIPTION
SSL_read(jries to reachum bytes from the specifiesklinto the bufferbuf.

NOTES
If necessary,SSL_read()will negotiate aTLS/SSL session, if not already explicitly performed by
SSL_connedB) or SSL_accefB). If the peer requests a re—negotiation, it will be performed transpar-
ently during theSSL_read(pperation. The behaviour 8SL_read(Jlepends on the underlyimgO.

For the transparent negotiation to succeedsghmust have been initialized to client or server mode.
This is being done by callin§SL_set _connect_std8 or SSL_set_accept_statdi@fore the first call
to anSSL_read(pr SSL_writg3) function.

SSL_read(Wworks based on theSL/TLSrecords. The data are received in records (with a maximum
record size of 16kB for SSLv3/TLSv1). Only when a record has been completely received, it can be
processed (decryption and check of integrity). Therefore data that was not retrieved at the last call of
SSL_read()can still be buffered inside thssL layer and will be retrieved on the next call to
SSL_read(). Ihum is higher than the number of bytes buffer88L_read(will return with the bytes
buffered. If no more bytes are in the buff86EL_read(Will trigger the processing of the next record.

Only when the record has been received and processed com@&klyead(will return reporting
success. At most the contents of the record will be returned. As the sizeSsf./ans record may
exceed the maximum packet size of the underlying transportT@R). it may be necessary to read
several packets from the transport layer before the record is compled&hanekad(ran succeed.

If the underlyingBIO is blocking, SSL_read(will only return, once the read operation has been fin-
ished or an error occurred, except when a renegotiation take place, in which case a
SSL_ERROR_WANT_READ may occur. This behaviour can be controlled with the
SSL_MODE_AUTO_RETRYlag of theSSL_CTX_set_mod®) call.

If the underlyingBIO is non-blocking, SSL_read(Will also return when the underlyirgjO could not

satisfy the needs @SL_read(}o continue the operation. In this case a cab®L._get errof3) with

the return value o8SL_read(ill yield SSL_ERROR_WANT_READ or SSL_ERROR_WANT_WRITE.

As at any time a re-negotiation is possible, a cab%b_read(ran also cause write operations! The
calling process then must repeat the call after taking appropriate action to satisfy the needs of
SSL_read(). The action depends on the underlging When using a non-blocking socket, nothing is

to be done, buselect()can be used to check for the required condition. When using a buffaéng

like aBIO pair, data must be written into or retrieved out ofB@ before being able to continue.

WARNING
When an SSL_read()operation has to be repeated becauseS®f ERROR_WANT_READ or
SSL_ERROR_WANT_WRITE, it must be repeated with the same arguments.

RETURN VALUES
The following return values can occur:

>0 The read operation was successful; the return value is the number of bytes actually read from the
TLS/SSLconnection.

* The read operation was not successful. The reason may either be a clean shutdown due to a “close
notify” alert sent by the peer (in which case 8®&._RECEIVED_SHUTDOWNilag in the ssl shut-
down state is set (s&SL_shutdowf8), SSL_set_shutdow®)). It is also possible, that the peer
simply shut down the underlying transport and the shutdown is incompleteSStalbet error()
with the return valueet to find out, whether an error occurred or the connection was shut down
cleanly 6SL_ERROR_ZERO_RETURN

SSLv2 (deprecated) does not support a shutdown alert protocol, so it can only be detected,
whether the underlying connection was closed. It cannot be checked, whether the closure was ini-
tiated by the peer or by something else.

0.9.7c 2001-09-13 375

SSL_read(3) OpenSSL SSL_read(3)

<0 Theread operation was not successful, because either an error occurred or action must be taken by
the calling process. CiISL_get_error(Yvith the return valueet to find out the reason.

SEE ALSO
SSL_get_errof3), SSL_writg3), SSL_CTX_set_ mo@@), SSL_CTX ne{), SSL_conne¢s),
SSL_accefB) SSL_set_connect_st#8), SSL_shutdowfB), SSL_set_shutdow8), ssl(3), bio (3)

376 2001-09-13 0.9.7c

SSL_rstate_string(3) OpenSSL SSL_rstate_string(3)

NAME
SSL_rstate_string, SSL_rstate_string_long — get textual description of state of an SSL object during
read operation

SYNOPSIS
#include <openssl/ssl.h>

const char *SSL_rstate_string(SSL *ssl);
const char *SSL_rstate_string_long(SSL *ssl);

DESCRIPTION
SSL_rstate_stringfeturns a 2 letter string indicating the current read state &3hebjectssl

SSL_rstate_string_long(®turns a string indicating the current read state of#embjectssl

NOTES
When performing a read operation, 8&L/TLSengine must parse the record, consisting of header and
body. When working in a blocking environment, SSL_rstate_string[long]() should always return
“RD"/“read done”.

This function should only seldom be needed in applications.

RETURN VALUES
SSL_rstate_string@ndSSL_rstate_string_long€an return the following values:

“RH"/“read header”
The header of the record is being evaluated.

“RB"/“read body”
The body of the record is being evaluated.

“RD"/“read done”
The record has been completely processed.

“unknown”/“unknown”
The read state is unknown. This should never happen.

SEE ALSO
ssl(3)

0.9.7c 2001-08-23 377

SSL_SESSION_free(3) OpenSSL SSL_SESSION_free(3)

NAME
SSL_SESSION_free - free an allocated SSL_SESSION structure

SYNOPSIS
#include <openssl/ssl.h>

void SSL_SESSION_free(SSL_SESSION *session);

DESCRIPTION
SSL_SESSION_freafgcrements the reference counse$sionand removes th8SL_SESSIONstruc-
ture pointed to bgessiorand frees up the allocated memory, if the the reference count has reached 0.

NOTES
SSL_SESSIONbbjects are allocated, whenTaS/SSL handshake operation is successfully completed.
Depending on the settings, sB8L_CTX_set_session_cache n{8jlethe SSL_SESSIONobjects are
internally referenced by th&@SL_CTXand linked into its session cacl8sSL objects may be using the
SSL_SESSIONbbject; as a session may be reused, seg&labbjects may be using orgsL_SESSION
object at the same time. It is therefore crucial to keep the reference count (usage information) correct
and not delete 8SL_SESSIONobject that is still used, as this may lead to program failures due to dan-
gling pointers. These failures may also appear delayed, e.g. whesLaBESSIONobject was com-
pletely freed as the reference count incorrectly became 0, but it is still referenced in the internal session
cache and the cache list is processed durtdgla CTX_flush_sessiqB83 operation.

SSL_SESSION_freafjust only be called fo8SL_SESSIONobjects, for which the reference count was
explicitly incremented (e.g. by callinSL_getl session(yee SSL_get_sessi¢R)) or when the
SSL_SESSIONobject was generated outsideriss handshake operation, e.g. by usilgj SSL_SES-
SION(3). It must not be called on oth&6L_SESSIONbbjects, as this would cause incorrect reference
counts and therefore program failures.

RETURN VALUES
SSL_SESSION_ frealdes not provide diagnostic information.

SEE ALSO
ssl(3), SSL_get_sessidB), SSL_CTX_set_session_cache nf8e&SSL_CTX flush_sessidiy,
d2i_SSL_SESSIqR)

378 2001-10-12 0.9.7c

SSL_SESSION_get _ex_new_index(3) OpenSSL SSL_SESSION_get_ex _new_index(3)

NAME
SSL_SESSION_get ex new_index, SSL_SESSION set ex data, SSL SESSION_get ex data -
internal application specific data functions

SYNOPSIS
#include <openssl/ssl.h>

int SSL_SESSION_get_ex_new_index(long argl, void *argp,
CRYPTO_EX_ new *new_func,
CRYPTO_EX_ dup *dup_func,
CRYPTO_EX free *free_func);

int SSL__SESSION_set_ex_data(SSL_SESSION *session, int idx, void *arg);
void *SSL_SESSION_get _ex_data(SSL_SESSION *session, int idx);

typedef int new_func(void *parent, void *ptr, CRYPTO_EX_ DATA *ad,
int idx, long argl, void *argp);
typedef void free_func(void *parent, void *ptr, CRYPTO_EX_DATA *ad,
int idx, long argl, void *argp);
typedef int dup_func(CRYPTO_EX_ DATA *to, CRYPTO_EX_DATA *from, void *from_d,
int idx, long argl, void *argp);
DESCRIPTION
Several OpenSSL structures can have application specific data attached to them. These functions are
used internally by OpenSSL to manipulate application specific data attached to a specific structure.

SSL_SESSION_get _ex_new_indsx(sed to register a new index for application specific data.
SSL_SESSION_set _ex_data()sed to store application dataagg for idx into thesessiorobject.
SSL_SESSION_get _ex_data(lised to retrieve the information fidx from session

A detailed description for the* get ex new index() functionality can be found in
RSA_get ex new_ind@). The* get ex data() and *_set ex data() functionality is described in
CRYPTO_set_ex_dad).

WARNINGS
The application data is only maintained for sessions held in memory. The application data is not
included when dumping the session witd_SSL_SESSION@nd all functions indirectly calling the
dump functions likePEM_write_ SSL_SESSIONgnd PEM_write_bio_SSL_SESSION@nd can
therefore not be restored.

SEE ALSO
ssl(3), RSA _get_ex_new_ind@®), CRYPTO_set ex dafd)

0.9.7c 2001-05-14 379

SSL_SESSION_get _time(3) OpenSSL SSL_SESSION_get_time(3)

NAME

SSL_SESSION_get time, SSL_SESSION_set time, SSL_SESSION_get timeout, SSL_SES-
SION_get_timeout - retrieve and manipulate session time and timeout settings

SYNOPSIS

#include <openssl/ssl.h>

long SSL_SESSION_get time(SSL_SESSION *s);

long SSL_SESSION_set_time(SSL_SESSION *s, long tm);
long SSL_SESSION_get_timeout(SSL_SESSION *s);

long SSL_SESSION_set_timeout(SSL_SESSION *s, long tm);

long SSL_get_time(SSL_SESSION *s);

long SSL_set_time(SSL_SESSION *s, long tm);
long SSL_get_timeout(SSL_SESSION *s);

long SSL_set_timeout(SSL_SESSION *s, long tm);

DESCRIPTION

SSL_SESSION_get_timegjurns the time at which the sessfwas established. The time is given in
seconds since the Epoch and therefore compatible to the time delivereditme(heall.

SSL_SESSION_set_timedplaces the creation time of the sessianith the chosen valuin.
SSL_SESSION_get_timeou#furns the timeout value set for sessiamseconds.
SSL_SESSION_set_timeowst]s the timeout value for sess&in seconds tém.

The SSL_get time()SSL_set_timeg()SSL_get_timeout(Jand SSL_set_timeout(unctions are syn-
onyms for the SSL_SESSION_*() counterparts.

NOTES

Sessions are expired by examining the creation time and the timeout value. Both are set at creation
time of the session to the actual time and the default timeout value at creation, respectively, as set by
SSL_CTX_ set_timeo(®). Using these functions it is possible to extend or shorten the lifetime of the
session.

RETURN VALUES

SSL_SESSION_get timafdSSL_SESSION_get timeou#furn the currently valid values.
SSL_SESSION_set tima()dSSL_SESSION_set_timeougturn 1 on success.
If any of the function is passed theJLL pointer for the sessias O is returned.

SEE ALSO

380

ssl(3), SSL_CTX_set_timeo(®), SSL_get_default_timead(®)

2001-08-17 0.9.7c

SSL_session_reused(3) OpenSSL SSL_session_reused(3)

NAME
SSL_session_reused — query whether a reused session was negotiated during handshake

SYNOPSIS
#include <openssl/ssl.h>
int SSL_session_reused(SSL *ssl);
DESCRIPTION
Query, whether a reused session was negotiated during the handshake.

NOTES
During the negotiation, a client can propose to reuse a session. The server then looks up the session in
its cache. If both client and server agree on the session, it will be reused and a flag is being set that can
be queried by the application.

RETURN VALUES
The following return values can occur:

* A new session was negotiated.
1 Asession was reused.

SEE ALSO
ssl(3), SSL_set_sessi@d), SSL_CTX_set_session_cache_n{8jle

0.9.7c 2001-07-20 381

SSL_set hio(3) OpenSSL SSL_set bio(3)

NAME
SSL_set_bio — connect the SSL object with a BIO

SYNOPSIS
#include <openssl/ssl.h>

void SSL_set_hio(SSL *ssl, BIO *rbio, BIO *whio);

DESCRIPTION
SSL_set_bio(ronnects the BIOshio and wbio for the read and write operations of theS/SSL
(encrypted) side ddsl.

The SSLengine inherits the behaviour difio andwbio, respectively. If &8I0 is non-blocking, thasl
will also have non-blocking behaviour.

If there was already BIO connected tasl BIO_free()will be called (for both the reading and writing
side, if different).

RETURN VALUES
SSL_set_bio@annot fail.

SEE ALSO
SSL_get _rbi¢3), SSL_conne¢B), SSL_accedB), SSL_shutdowfB), ssl(3), bio (3)

382 2000-09-16 0.9.7c

SSL_set_connect_state(3) OpenSSL SSL_set_connect_state(3)

NAME
SSL_set _connect_state, SSL_get _accept_state — prepare SSL object to work in client or server mode

SYNOPSIS
#include <openssl/ssl.h>

void SSL_set_connect_state(SSL *ssl);
void SSL_set_accept_state(SSL *ssl);

DESCRIPTION
SSL_set_connect_stateftssslto work in client mode.

SSL_set_accept_statesftssslto work in server mode.

NOTES
When theSSL_CTXobject was created witBSL_CTX_ne®), it was either assigned a dedicated client
method, a dedicated server method, or a generic method, that can be used for both client and server
connections. (The method might have been changed WL CTX set ssl versi@) or
SSL_set_ssl_method()

When beginning a new handshake, #8t. engine must know whether it must call the connect (client)
or accept (server) routines. Even though it may be clear from the method chosen, whether client or
server mode was requested, the handshake routines must be explicitly set.

When using thesSL_conne¢B) or SSL_accedB) routines, the correct handshake routines are auto-
matically set. When performing a transparent negotiation uSBIig writg3) or SSL_read3), the
handshake routines must be explicitly set in advance using €e8Bér set connect statey
SSL_set_accept_state()

RETURN VALUES
SSL_set _connect_stataf)dSSL_set_accept_statel) not return diagnostic information.

SEE ALSO
ssl(3), SSL_new3), SSL_CTX _ne{B), SSL_connedB8), SSL_accefB), SSL_writ€3), SSL_read?3),
SSL_do_handshak®), SSL_CTX_ set_ssl_versi@)

0.9.7c 2002-07-19 383

SSL_set fd(3) OpenSSL SSL_set fd(3)

NAME
SSL_set_fd — connect the SSL object with a file descriptor

SYNOPSIS
#include <openssl/ssl.h>

int SSL_set fd(SSL *ssl, int fd);
int SSL_set_rfd(SSL *ssl, int fd);
int SSL_set wfd(SSL *ssl, int fd);

DESCRIPTION
SSL_set fd(3ets the file descriptdd as the input/output facility for theLS/SSL (encrypted) side of
ssl fd will typically be the socket file descriptor of a network connection.

When performing the operationsacketBIO is automatically created to interface betweenssiand
fd. The BIO and hence th&SL engine inherit the behaviour &. If fd is non-blocking, thesslwill
also have non-blocking behaviour.

If there was already BIO connected tasl BIO_free()will be called (for both the reading and writing
side, if different).

SSL_set rfd(and SSL_set_wfd(perform the respective action, but only for the read channel or the

write channel, which can be set independently.

RETURN VALUES
The following return values can occur:

» The operation failed. Check the error stack to find out why.
1 The operation succeeded.

SEE ALSO
SSL_get f¢B), SSL_set biB), SSL_connedB8), SSL_accefB), SSL_shutdowfB), ssl(3) , bio(3)

384 2000-09-16 0.9.7c

SSL_set_session(3) OpenSSL SSL_set_session(3)

NAME
SSL_set _session — set a TLS/SSL session to be used during TLS/SSL connect

SYNOPSIS
#include <openssl/ssl.h>

int SSL_set_session(SSL *ssl, SSL_SESSION *session);

DESCRIPTION
SSL_set_session@ets sessionto be used when th&LS/SSL connection is to be established.
SSL_set_session§ only useful forTLS/SSL clients. When the session is set, the reference count of
sessions incremented by 1. If the session is not reused, the reference count is decremented again dur-
ing SSL_connect(). Whether the session was reused can be queried v8®BLtlsession_reus’)
call.

If there is already a session set insidb(because it was set withSL_set_sessiongefore or because
the samesslwas already used for a connectioBEL_SESSION _freef()ll be called for that session.

NOTES
SSL_SESSIONbbjects keep internal link information about the session cache list, when being inserted
into oneSSL_CTXobject’s session cache. OB8L_SESSIONobject, regardless of its reference count,
must therefore only be used with oB®L_CTXobject (and th&SL objects created from th&SL_CTX
object).

RETURN VALUES
The following return values can occur:

» The operation failed; check the error stack to find out the reason.
1 The operation succeeded.

SEE ALSO
ssl(3), SSL_SESSION_fré®), SSL_get sessi@B), SSL_session reus@), SSL_CTX set ses-
sion_cache_mod8)

0.9.7c 2001-10-12 385

SSL_set_shutdown(3) OpenSSL SSL_set_shutdown(3)

NAME
SSL_set_shutdown, SSL_get_shutdown — manipulate shutdown state of an SSL connection

SYNOPSIS
#include <openssl/ssl.h>

void SSL_set_shutdown(SSL *ssl, int mode);
int SSL_get_shutdown(SSL *ssl);

DESCRIPTION
SSL_set_shutdowrggts the shutdown statessito mode

SSL_get_shutdown@turns the shutdown mode sl

NOTES
The shutdown state of an ssl connection is a bitmask of:

* No shutdown setting, yet.

SSL_SENT_SHUTDOWN
A “close notify” shutdown alert was sent to the peer, the connection is being considered closed
and the session is closed and correct.

SSL_RECEIVED_SHUTDOWN
A shutdown alert was received form the peer, either a normal “close notify” or a fatal error.

SSL_SENT_SHUTDOWMNASSL_RECEIVED_SHUTDOWNan be set at the same time.

The shutdown state of the connection is used to determine the state of the ssl session. If the session is
still open, wherSSL_clea(3) or SSL_fre€3) is called, it is considered bad and removed according to
RFC2246 The actual condition for a correctly closed sessigssis SENT_SHUTDOWNaccording to

theTLS RFG it is acceptable to only send the “close notify” alert but to not wait for the peer’s answer,
when the underlying connection is close®SL_set_shutdown€pn be used to set this state without
sending a close alert to the peer (S&._shutdowf3)).

If a “close notify” was received, SSL_RECEIVED_SHUTDOWN will be set, for setting
SSL_SENT_SHUTDOWNthe application must however still ceiSL_shutdowf8) or SSL_set_shut-
down()itself.

RETURN VALUES
SSL_set_shutdowngpes not return diagnostic information.

SSL_get_shutdown@turns the current setting.

SEE ALSO
ssl(3), SSL_shutdowf8), SSL_CTX_set_quiet_shutdof8h SSL_clea(3), SSL_fre€3)

386 2001-08-20 0.9.7c

SSL_set verify_result(3) OpenSSL SSL_set verify_result(3)

NAME
SSL_set verify_result — override result of peer certificate verification

SYNOPSIS
#include <openssl/ssl.h>

void SSL_set_verify_result(SSL *ssl, long verify_result);

DESCRIPTION

SSL_set verify_result@etsverify result of the objectsslto be the result of the verification of the
X509 certificate presented by the peer, if any.

NOTES
SSL_set verify_resultfyverrides the verification result. It only changes the verification result gbthe
object. It does not become part of the established session, so if the session is to be reused later, the orig-
inal value will reappear.

The valid codes foverify_result are documented iverify(1).

RETURN VALUES
SSL_set verify_resultfoes not provide a return value.

SEE ALSO
ssl(3), SSL_get_verify resyB), SSL_get peer_certificat®), verify (1)

0.9.7c 2000-09-20 387

SSL_shutdown(3) OpenSSL SSL_shutdown(3)

NAME
SSL_shutdown - shut down a TLS/SSL connection

SYNOPSIS
#include <openssl/ssl.h>

int SSL_shutdown(SSL *ssl);

DESCRIPTION
SSL_shutdown@huts down an activELS/SSL connection. It sends the “close notify” shutdown alert
to the peer.

NOTES
SSL_shutdown§Jies to send the “close notify” shutdown alert to the peer. Whether the operation suc-
ceeds or not, th8SL_SENT_SHUTD®@/N flag is set and a currently open session is considered closed
and good and will be kept in the session cache for further reuse.

The shutdown procedure consists of 2 steps: the sending of the “close notify” shutdown alert and the
reception of the peer’s “close notify” shutdown alert. According to Th8 standard, it is acceptable

for an application to only send its shutdown alert and then close the underlying connection without
waiting for the peer’s response (this way resources can be saved, as the process can already terminate
or serve another connection). When the underlying connection shall be used for more communications,
the complete shutdown procedure (bidirectional “close notify” alerts) must be performed, so that the
peers stay synchronized.

SSL_shutdown§upports both uni— and bidirectional shutdown by its 2 step behaviour.

When the application is the first party to send the “close notify” a&®i, shutdowngill only send

the alert and the set tlsSL_SENT_SHUTDOWNMIlag (so that the session is considered good and will be
kept in cache)SSL_shutdown(ill then return with 0. If a unidirectional shutdown is enough (the
underlying connection shall be closed anyway), this first ca&iSh_shutdown(¥ sufficient. In order

to complete the bidirectional shutdown handsh&&l, shutdownfnust be called again. The second
call will make SSL_shutdowngyait for the peer’s “close notify” shutdown alert. On success, the sec-
ond call toSSL_shutdownyill return with 1.

If the peer already sent the “close notify” aled it was already processed implicitly inside another
function (SSL_rea(B)), the SSL_RECEIVED_SHUTDOWNflag is set.SSL_shutdown(vill send the
“close notify” alert, set theSSL_SENT_SHUTDOWNlag and will immediately return with 1. Whether
SSL_RECEIVED_SHUTDOWNSs already set can be checked using $i8t._get shutdown(¥ee also
SSL_set_shutdow@) call.

It is therefore recommended, to check the return valugSkf shutdown@nd callSSL_shutdown()
again, if the bidirectional shutdown is not yet complete (return value of the first call is 0). As the shut-
down is not specially handled in the SSLv2 proto8&8L_shutdowngyill succeed on the first call.

The behaviour 08SL_shutdown@dditionally depends on the underlyiBgp.

If the underlyingBIO is blocking, SSL_shutdowngill only return once the handshake step has been
finished or an error occurred.

If the underlyingBIO is non-blocking, SSL_shutdowngyill also return when the underlyirgjO could

not satisfy the needs o8SL_shutdown(Xo continue the handshake. In this case a call to
SSL_get_error(with the return value oSSL_shutdown(vill yield SSL_ERROR_WANT_READ or
SSL_ERROR_WANT_WRITE. The calling process then must repeat the call after taking appropriate
action to satisfy the needs 86L_shutdown(). The action depends on the undemyigWhen using

a non-blocking socket, nothing is to be done, dmiect()can be used to check for the required condi-
tion. When using a bufferinglO, like aBIO pair, data must be written into or retrieved out of Bhe@
before being able to continue.

SSL_shutdown@an be modified to only set the connection to “shutdown” state but not actually send
the “close notify” alert messages, s&SL_CTX set_quiet_shutdo@h When “quiet shutdown” is
enabledSSL_shutdowngyill always succeed and return 1.

RETURN VALUES
The following return values can occur:

388 2001-08-20 0.9.7c

SSL_shutdown(3) OpenSSL SSL_shutdown(3)

1 The shutdown was successfully completed. The “close notify” alert was sent and the peer’s
“close notify” alert was received.

» The shutdown is not yet finished. Ca6L_shutdown(pr a second time, if a bidirectional shut-
down shall be performed. The output®6L_get errof3) may be misleading, as an erroneous
SSL_ERROR_SYSCALImay be flagged even though no error occurred.

-1 The shutdown was not successful because a fatal error occurred either at the protocol level or a
connection failure occurred. It can also occur if action is need to continue the operation for non-
blocking BlOs. CallSSL_get_errof3) with the return valueet to find out the reason.

SEE ALSO
SSL_get_errof3), SSL_connedB), SSL_accefB), SSL_set_shutdowB), SSL_CTX_set_quiet_shut-
down(3), SSL_clea(3), SSL_fre€3), ssl(3), bio(3)

0.9.7c 2001-08-20 389

SSL_state_string(3) OpenSSL SSL_state_string(3)

NAME
SSL_state_string, SSL_state_string_long — get textual description of state of an SSL object

SYNOPSIS
#include <openssl/ssl.h>

const char *SSL_state_string(SSL *ssl);
const char *SSL_state_string_long(SSL *ssl);

DESCRIPTION
SSL_state_stringfeturns a 6 letter string indicating the current state os#ieobjectssl

SSL_state_string_longfgturns a string indicating the current state of3eobjectssl

NOTES
During its use, arsSL objects passes several states. The state is internally maintained. Querying the
state information is not very informative before or when a connection has been established. It however
can be of significant interest during the handshake.

When using non-blocking sockets, the function call performing the handshake may return with
SSL_ERROR_WANT_READr SSL_ERROR_WANT_WRITEonNdition, so that SSL_state_string[_long]()
may be called.

For both blocking or non-blocking sockets, the details state information can be used within the
info_callback function set with tH&SL_set_info_callback¢all.

RETURN VALUES
Detailed description of possible states to be included later.

SEE ALSO
ssl(3), SSL_CTX_set_info_callbat®

390 2001-08-24 0.9.7c

SSL_want(3) OpenSSL SSL_want(3)

NAME
SSL_want, SSL_want_nothing, SSL_want_read, SSL_want_write, SSL_want_x509 lookup - obtain
state information TLS/SSL I/O operation

SYNOPSIS
#include <openssl/ssl.h>

int SSL_want(SSL *ssl);

int SSL_want_nothing(SSL *ssl);

int SSL_want_read(SSL *ssl);

int SSL_want_write(SSL *ssl);

int SSL_want_x509_lookup(SSL *ssl);

DESCRIPTION
SSL_want(yeturns state information for ti8SL objectssl

The other SSL_want_*() calls are shortcuts for the possible states retur8&d. byant().

NOTES
SSL_want(examines the internal state information of 8% object. Its return values are similar to
that of SSL_get _errof3). Unlike SSL_get_errof3), which also evaluates the error queue, the results
are obtained by examining an internal state flag only. The information must therefore only be used for
normal operation under non-blocking I/O. Error conditions are not handled and must be treated using
SSL_get_errof3).

The result returned bBSL_want(should always be consistent with the resus8t._get errof3).

RETURN VALUES
The following return values can currently occur &8L_want()

SSL_NOTHING
There is no data to be written or to be read.

SSL_WRITING
There are data in th&SL buffer that must be written to the underlyiBgp layer in order to com-
plete the actual SSL_*() operation. A call t&SL_get errof3) should return
SSL_ERROR_WANT_WRITE

SSL_READING
More data must be read from the underlyBi@ layer in order to complete the actual SSL_*()
operation. A call t&&SL_get_errof3) should returrsSL_ERROR_WANT_READ

SSL_X509 LOOKUP
The operation did not complete because an application callback set by
SSL_CTX_ set_client_cert_cli{as asked to be called again. A callS8L_get_errof3) should
returnSSL_ERROR_WANT_X509 LOOKUP

SSL_want_nothing()SSL_want_read()SSL_want_write()SSL_want_x509_lookup(gturn 1, when
the corresponding condition is true or O otherwise.

SEE ALSO
ssl(3), err (3), SSL_get_errof3)

0.9.7c 2001-08-17 391

SSL_write(3) OpenSSL SSL_write(3)

NAME
SSL_write — write bytes to a TLS/SSL connection.

SYNOPSIS
#include <openssl/ssl.h>

int SSL_write(SSL *ssl, const void *buf, int num);

DESCRIPTION
SSL_write(writesnum bytes from the buffelbuf into the specifiedslconnection.

NOTES
If necessarySSL_write()will negotiate aTLS/SSL session, if not already explicitly performed by
SSL_connedB) or SSL_accefB). If the peer requests a re—negotiation, it will be performed transpar-
ently during theSSL_write(pperation. The behaviour 8SL_write(depends on the underlyimgO.

For the transparent negotiation to succeedsghmust have been initialized to client or server mode.
This is being done by callin§SL_set _connect_std8 or SSL_set_accept_statdi@fore the first call
to anSSL_read3) or SSL_write(function.

If the underlyingBIO is blocking, SSL_write(Wwill only return, once the write operation has been fin-
ished or an error occurred, except when a renegotiation take place, in which case a
SSL_ERROR_WANT_READ may occur. This behaviour can be controlled with the
SSL_MODE_AUTO_RETRYlag of theSSL_CTX_set_mod®) call.

If the underlyingBIO is non-blocking, SSL_write(will also return, when the underlyirglO could not

satisfy the needs @SL_write(Xo continue the operation. In this case a cab&b_get errof3) with

the return value of SSL_write() will yield SSL_ERROR_WANT_READ or
SSL_ERROR_WANT_WRITE. As at any time a re-negotiation is possible, a cai$h_write(lcan also

cause read operations! The calling process then must repeat the call after taking appropriate action to
satisfy the needs @SL_write(). The action depends on the underlgitg When using a non-block-

ing socket, nothing is to be done, ls@lect()can be used to check for the required condition. When
using a bufferin@dlO, like aBIO pair, data must be written into or retrieved out of i@ before being

able to continue.

SSL_write(will only return with success, when the complete contentsubbf lengthnum has been
written. This default behaviour can be changed withSthie MODE_ENABLE_PARTIAL_WRITEOption

of SSL_CTX_set_mo(®). When this flag is se§SL_write(will also return with success, when a par-

tial write has been successfully completed. In this cas&$®ie write(Joperation is considered com-
pleted. The bytes are sent and a r&8L_write()operation with a new buffer (with the already sent
bytes removed) must be started. A partial write is performed with the size of a message block, which is
16kB for SSLv3/TLSv1.

WARNING
When an SSL_write() operation has to be repeated becauseS®f ERROR_WANT_READ or
SSL_ERROR_WANT_WRITE, it must be repeated with the same arguments.

When callingSSL_write(with num=0 bytes to be sent the behaviour is undefined.

RETURN VALUES
The following return values can occur:

>0 The write operation was successful, the return value is the number of bytes actually written to the
TLS/SSLconnection.

e The write operation was not successful. Probably the underlying connection was closed. Call
SSL_get_error(vith the return valueet to find out, whether an error occurred or the connection
was shut down cleanhs6L_ERROR_ZERO_RETURN

SSLv2 (deprecated) does not support a shutdown alert protocol, so it can only be detected,
whether the underlying connection was closed. It cannot be checked, why the closure happened.

<0 The write operation was not successful, because either an error occurred or action must be taken
by the calling process. C8ISL_get_error(jvith the return valueet to find out the reason.

392 2002-07-19 0.9.7c

SSL_write(3) OpenSSL SSL_write(3)

SEE ALSO
SSL_get_errof3), SSL_read3), SSL_CTX_set mo¢®), SSL_CTX_ne(8), SSL_conne¢s),
SSL_accefB) SSL_set_connect_st&8), ssl(3), bio (3)

0.9.7c 2002-07-19 393

threads(3) OpenSSL threads(3)

NAME
CRYPTO_set_locking_callback, CRYPTO_set _id_callback, CRYPTO num_locks, CRYPTO_set_dyn-
lock_create_callback, CRYPTO_set_dynlock_lock_callback, CRYPTO_set dynlock destroy callback,
CRYPTO_get _new_dynlockid, CRYPTO_destroy_dynlockid, CRYPTO lock — OpenSSL thread sup-
port

SYNOPSIS
#include <openssl/crypto.h>

void CRYPTO_set_locking_callback(void (*locking_function)(int mode,
int n, const char *file, int line));

void CRYPTO_set _id_callback(unsigned long (*id_function)(void));
int CRYPTO_num_locks(void);

/* struct CRYPTO_dynlock_value needs to be defined by the user */
struct CRYPTO_dynlock_value;

void CRYPTO_set_dynlock_create_callback(struct CRYPTO_dynlock value *
(*dyn_create_function)(char *file, int line));

void CRYPTO_set_dynlock_lock_callback(void (*dyn_lock_function)
(int mode, struct CRYPTO_dynlock_value *I,
const char *file, int line));

void CRYPTO_set_dynlock_destroy_callback(void (*dyn_destroy_function)
(struct CRYPTO_dynlock_value *I, const char *file, int line));

int CRYPTO_get _new_dynlockid(void);
void CRYPTO_destroy_dynlockid(int i);
void CRYPTO_lock(int mode, int n, const char *file, int line);

#define CRYPTO_w_lock(type) \
CRYPTO_lock(CRYPTO_LOCKCRYPTO_WRITE,type,_ FILE__, LINE_)
#define CRYPTO_w_unlock(type) \
CRYPTO_lock(CRYPTO_UNLOCKIRYPTO_WRITE,type,_ FILE_ , LINE_)
#define CRYPTO_r_lock(type) \
CRYPTO_lock(CRYPTO_LOCKCRYPTO_READ,type, FILE__, LINE_)
#define CRYPTO_r_unlock(type) \
CRYPTO_lock(CRYPTO_UNLOCKIRYPTO_READ,type,_ FILE__, LINE_)
#define CRYPTO_add(addr,amount,type) \
CRYPTO_add_lock(addr,amount,type, FILE__, LINE_)

DESCRIPTION
OpenSSL can safely be used in multi-threaded applications provided that at least two callback func-
tions are set.

locking_function(int mode, int n, const char *file, int line) is needed to perform locking on shared data

structures. (Note that OpenSSL uses a number of global data structures that will be implicitly shared
whenever multiple threads use OpenSSL.) Multi-threaded applications will crash at random if it is not

set.

locking_function(Imust be able to handle up@RYPTO_num_locksdifferent mutex locks. It sets the
n—-th lock ifmode& CRYPTO_LOCK, and releases it otherwise.

file andline are the file number of the function setting the lock. They can be useful for debugging.

id_function(void) is a function that returns a threadIt is not needed on Windows nor on platforms
wheregetpid()returns a differenD for each thread (most notably Linux).

Additionally, OpenSSL supports dynamic locks, and sometimes, some parts of OpenSSL need it for
better performance. To enable this, the following is required:

» Three additional callback function, dyn_create function, dyn_lock function and dyn_destroy func-
tion.

394 2001-11-08 0.9.7c

threads(3) OpenSSL threads(3)

* A structure defined with the data that each lock needs to handle.

struct CRFPTO_dynlock_value has to be defined to contain whatever structure is needed to handle
locks.

dyn_create_function(const char *file, int line) is needed to create a lock. Multi-threaded applications
might crash at random if it is not set.

dyn_lock_function(int mode, CRYPTO_dynlock *I, const char *file, int line) is needed to perform
locking off dynamic lock numbered n. Multi-threaded applications might crash at random if it is not
set.

dyn_destroy_function(CRYPTO_dynlock *I, const char *file, int line) is needed to destroy the lock I.
Multi-threaded applications might crash at random if it is not set.

CRYPTO_get_new_dynlockid§) used to create locks. It will call dyn_create_function for the actual
creation.

CRYPTO_destroy_dynlockid§) used to destroy locks. It will call dyn_destroy function for the actual
destruction.

CRYPTO_lock()s used to lock and unlock the locks. mode is a hitfield describing what should be
done with the lock. nis the number of the lock as returned €&WMPTO_get new_dynlockid(nhode

can be combined from the following values. These values are pairwise exclusive, with undefined be-
haviour if misused (for exampleRYPTO_READandCRYPTO_WRITEshould not be used together):

CRYPTO_LOCK 0x01
CRYPTO_UNLOCK 0x02
CRYPTO_READ 0x04
CRYPTO_WRITE 0x08

RETURN VALUES
CRYPTO_num_locks(gturns the required number of locks.

CRYPTO_get_new_dynlockidéturns the index to the newly created lock.
The other functions return no values.

NOTE
You can find out if OpenSSL was configured with thread support:

#define OPENSSL_THREAD_DEFINES
#include <openssl/opensslconf.h>
#if defined(THREADS)
/l thread support enabled
#else
/I no thread support
#endif

Also, dynamic locks are currently not used internally by OpenSSL, but may do so in the future.

EXAMPLES
crypto/threads/mttest.cshows examples of the callback functions on Solaris, Irix and Win32.

HISTORY
CRYPTO_set_locking_callback§nd CRYPTO_set_id_callback@re available in all versions of
SSlLeay and OpenSSLCRYPTO_num_locks{yas added in OpenSSL 0.9.4. All functions dealing
with dynamic locks were added in OpenSSL 0.9.5b—dev.

SEE ALSO
crypto(3)

0.9.7c 2001-11-08 395

ui(3) OpenSSL ui(3)

NAME
Ul_new, Ul_new_method, Ul_free, Ul_add_input_string, Ul_dup_input_string, Ul_add_verify_string,
Ul_dup_verify_string, Ul_add_input_boolean, Ul_dup_input_boolean, Ul_add_info_string,
Ul_dup_info_string, Ul_add_error_string, Ul_dup_error_string, Ul_construct_prompt
Ul_add_user_data, Ul_getO_user_data, Ul_get0_result, Ul_process, Ul_ctrl, Ul_set _default_method,
Ul_get default_method, Ul_get method, Ul_set_method, Ul_OpenSSL, ERR_load_UI_strings — New
User Interface

SYNOPSIS
#include <openssl/ui.h>

typedef struct ui_st Ul;
typedef struct ui_method_st Ul_METHOD;

Ul *Ul_new(void);
Ul *Ul_new_method(const Ul_METHOD *method);
void Ul_free(Ul *ui);

int Ul_add_input_string(Ul *ui, const char *prompt, int flags,
char *result_buf, int minsize, int maxsize);
int Ul_dup_input_string(Ul *ui, const char *prompt, int flags,
char *result_buf, int minsize, int maxsize);
int Ul_add_verify_string(Ul *ui, const char *prompt, int flags,
char *result_buf, int minsize, int maxsize, const char *test_buf);
int Ul_dup_verify_string(Ul *ui, const char *prompt, int flags,
char *result_buf, int minsize, int maxsize, const char *test_buf);
int Ul_add_input_boolean(Ul *ui, const char *prompt, const char *action_desc,
const char *ok_chars, const char *cancel_chars,
int flags, char *result_buf);
int Ul_dup_input_boolean(Ul *ui, const char *prompt, const char *action_desc,
const char *ok_chars, const char *cancel_chars,
int flags, char *result_buf);
int Ul_add_info_string(UI *ui, const char *text);
int Ul_dup_info_string(Ul *ui, const char *text);
int Ul_add_error_string(Ul *ui, const char *text);
int Ul_dup_error_string(Ul *ui, const char *text);

/* These are the possible flags. They can be or'ed together. */
#define UL_INPUT_FLAG_ECHO 0x01
#define UL_INPUT_FLAG_DEFAULT_PWD 0x02

char *Ul_construct_prompt(Ul *ui_method,
const char *object_desc, const char *object_name);

void *Ul_add_user_data(Ul *ui, void *user_data);
void *Ul_get0_user_data(Ul *ui);

const char *Ul_getQ_result(Ul *ui, int i);

int Ul_process(Ul *ui);

int Ul_ctrl(UI *ui, int cmd, long i, void *p, void (*)());
#define U_CTRL_PRINT_ERRORS 1
#define UI_CTRL_IS_REDOABLE 2

void Ul_set_default_method(const Ul_ METHOD *meth);

const Ul_METHOD *Ul_get_default_method(void);

const Ul_METHOD *Ul_get_method (Ul *ui);

const Ul_METHOD *Ul_set_method(UI *ui, const Ul_METHOD *meth);

Ul_METHOD *Ul_OpenSSL(void);

DESCRIPTION
Ul stands for User Interface, and is general purpose set of routines to prompt the user for text-based
information. Through user-written methods (sgecreatg(3)), prompting can be done in any way

396 2001-10-25 0.9.7c

ui(3)

0.9.7c

OpenSSL ui(3)

imaginable, be it plain ¥ prompting, through dialog boxes or from a cell phone.

All the functions verk through a context of the typdl. This context contains all the information
needed to prompt correctly as well as a referencea toMETHOD, which is an ordered vector of func-
tions that carry out the actual prompting.

The first thing to do is to createla with Ul_new() or Ul_new_method()then add information to it

with the Ul_add or Ul_dup functions. Also, user-defined random data can be passed down to the
underlying method through calls to Ul_add_user_data. The défaniethod doesn't care about these
data, but other methods might. Finally, usé process()to actually perform the prompting and
Ul_get0_result(}o find the result to the prompt.

A Ul can contain more than one prompt, which are performed in the given sequence. Each prompt gets
an index number which is returned by the Ul_add and Ul_dup functions, and has to be used to get the
corresponding result witdl_getO_result().

The functions are as follows:

Ul_new() creates a newl using the defaultl method. When done with thigl, it should be freed
usingUl_free()

Ul_new_method(yreates a newl using the giverul method. When done with thidl, it should be
freed usindJl_free()

Ul_OpenSSL(xeturns the built-inul method (note: not the default one, since the default can be
changed. See further on). This method is the most machine/OS dependent part of OpenSSL and nor-
mally generates the most problems when porting.

Ul_free()removes aJl from memory, along with all other pieces of memory that's connected to it, like
duplicated input strings, results and others.

Ul_add_input_string(andUl_add_verify_string(rdd a prompt to thel, as well as flags and a result
buffer and the desired minimum and maximum sizes of the result. The given information is used to
prompt for information, for example a password, and to verify a password (i.e. having the user enter it
twice and check that the same string was entered twigie)add_verify_string(Xakes and extra argu-

ment that should be a pointer to the result buffer of the input string that it's supposed to verify, or verifi-
cation will fail.

Ul_add_input_boolean@dds a prompt to thel that's supposed to be answered in a boolean way, with

a single character for yes and a different character for no. A set of characters that can be used to cancel
the prompt is given as well. The prompt itself is really divided in two, one part being the descriptive
text (given through th@romptargument) and one describing the possible answers (given through the
action_desargument).

Ul_add_info_string(Jand Ul_add_error_string()add strings that are shown at the same time as the
prompt for extra information or to show an error string. The difference between the two is only con-
ceptual. With the builtin method, there’s no technical difference between them. Other methods may
make a difference between them, however.

The flags currently supported awe INPUT_FLAG_ECHQ which is relevant fotJl_add_input_string()

and will have the users response be echoed (when prompting for a password, this flag should obviously
not be used, andl_INPUT_FLAG_DEFAULT_PWDQ which means that a default password of some sort

will be used (completely depending on the application anditineethod).

Ul_dup_input_string() Ul_dup_verify_string(),Ul_dup_input_boolean()Ul_dup_info_string()and
Ul_dup_error_string()are basically the same as their Ul_add counterparts, except that they make their
own copies of all strings.

Ul_construct_prompt(js a helper function that can be used to create a prompt from two pieces of

information: an description and a name. The default constructor (if there is none provided by the
method used) creates a string "Erdescriptionfor name:“. With the description "pass phrase“ and

the file name "foo.key*, that becomes "Enter pass phrase for foo.key:". Other methods may create
whatever string and may include encodings that will be processed by the other method functions.

Ul_add_user_data(®dds a piece of memory for the method to use at any time. The huilmethod
doesn'’t care about this info. Note that several calls to this function doesn't add data, it replaces the pre-
vious blob with the one given as argument.

2001-10-25 397

ui(3)

OpenSSL ui(3)

Ul_get0_user_data(jetrieves the data that has last been given tttheith Ul_add_user_data()
Ul_getO_result(returns a pointer to the result buffer associated with the information indexed by

Ul_process()goes through the information given so far, does all the printing and prompting and
returns.

Ul_ctrl() adds extra control for the application author. For now, it understands two commands:
UI_CTRL_PRINT_ERRORSwhich makedJl_process()print the OpenSSL error stack as part of pro-
cessing theul, andUI_CTRL_IS_REDOABLE which returns a flag saying if the usedcan be used
again or not.

Ul_set_default_method¢hanges the defaul method to the one given.
Ul_get default_method(®turns a pointer to the current defaultmethod.
Ul_get_method()eturns theul method associated with a given
Ul_set_method(¢hanges th&)l method associated with a given

SEE ALSO

ui_creatg(3), ui_compat3)

HISTORY

TheUl section was first introduced in OpenSSL 0.9.7.

AUTHOR

398

Richard Levitte (richard@levitte.org) for the OpenSSL project (http://www.openssl.org).

2001-10-25 0.9.7c

ui_compat(3) OpenSSL ui_compat(3)

NAME
des_read password, des_read 2passwords, des_read pw_string, des read pw — Compatibility user
interface functions

SYNOPSIS
int des_read_password(DES_cblock *key,const char *prompt,int verify);
int des_read_2passwords(DES_cblock *keyl,DES_cblock *key2,
const char *prompt,int verify);

int des_read_pw_string(char *buf,int length,const char *prompt,int verify);
int des_read_pw(char *buf,char *buff,int size,const char *prompt,int verify);

DESCRIPTION
TheDESlibrary contained a few routines to prompt for passwords. These aren't necessarely dependent
onDES, and have therefore become part ofuheompatibility library.

des_read_pw(writes the string specified byromptto standard output turns echo off and reads an
input string from the terminal. The string is returnecbirf, which must have spac for at leaite

bytes. Ifverifyis set, the user is asked for the password twice and unless the two copies match, an error
is returned. The second password is storduliffy which must therefore also be at lesigebytes. A

return code of -1 indicates a system error, 1 failure due to use interaction, and 0 is success. All other
functions described here udes_read_pw(jo do the work.

des_read_pw_string(¥ a variant ofles_read_pw(bhat provides a buffer for you véerify is set.

des_read_password(@alls des_read_pw()and converts the password toDES key by calling
DES_string_to_key(des_read_2password@perates in the same waydes_read passwordéxcept
that it generates two keys by using DES_string_to_2keyfunction.

NOTES
des_read_pw_string(s available in theviT Kerberos library as well, and is also available under the
nameEVP_read_pw_string()

SEE ALSO
ui (3), ui_create(3)

AUTHOR
Richard Levitte (richard@levitte.org) for the OpenSSL project (http://www.openssl.org).

0.9.7c 2001-10-25 399

X509 NAME_add_entry by txt(3) OpenSSL X509 NAME_add_entry_ by txt(3)

NAME

X509 NAME_add_entry by txt, X509 NAME_add_entry by OBJ,
X509 NAME_add_entry by NID, X509 NAME_add_entry, X509 NAME_delete_entry -
X509 NAME modification functions

SYNOPSIS

int X509 _NAME_add_entry_ by txt(X509 _NAME *name, char *field, int type, unsigned char *bytes,
int len, int loc, int set); int X509 NAME_add_entry by OBJ(X509 NAME *nam@&N1_OBJECT
*obj, int type, unsigned char “*bytes, int len, int loc, int set); int
X509 NAME_add_entry_by NID(X509_NAME *name, int nid, int type, unsigned char *bytes, int
len, int loc, int set); int X509 _NAME_add_entry(X509_NAME *name, X509 NAME_ENTRY *ne, int
loc, int set); X509 _NAME_ENTRY *X509 NAME_delete_entry(X509_NAME *name, int loc);

DESCRIPTION

X509 NAME_add_entry by txt() X509 NAME_add_entry_by OBJ() and
X509 NAME_add_entry by NIDgid a field whose name is defined by a stfiiglg, an objectobj or
aNID nid respectively. The field value to be added ibytes of lengthlen. If len is -1 then the field
length is calculated internally using strlen(bytes).

The type of field is determined lype which can either be a definition of the typebgtes (such as
MBSTRING_ASC) or a standard\SN1 type (such a¥ _ASN1 _IA5STRING). The new entry is added
to a position determined bgc andset.

X509 NAME_add_entry§dds a copy 0K509 NAME_ENTRY structurene to name. The new entry
is added to a position determinedlbg andset. Since a copy afe is addedche must be freed up after
the call.

X509 NAME_delete_entry@eletes an entry fromameat positionloc. The deleted entry is returned
and must be freed up.

NOTES

The use of string types suchMBSTRING_ASC or MBSTRING_UTFS8 is strongly recommened for the
type parameter. This allows the internal code to correctly determine the type of the field and to apply
length checks according to the relevant standards. This is doneA®Wig STRING_set by NID()

If instead arASN1type is used no checks are performed and the supplied dateegis used directly.

In X509 _NAME_add_entry by txtfefield string represents the field name using OBJ_txt2obij(field,
0).

The loc andsetparameters determine where a new entry should be added. For almost all applications
loc can be set to —1 arsktto 0. This adds a new entry to the enchame as a single valued Rela-
tiveDistinguishedNameRDN).

loc actually determines the index where the new entry is inserted: if it is —1 it is appended.
setdetermines how the new type is added. If it is zero aRBWis created.

If setis -1 or 1 it is added to the previous or RRRIN structure respectively. This will then be a multi-
valuedRDN: since multivalues RDNs are very seldom usetds almost always set to zero.

EXAMPLES

400

Create arX509_NAME structure:
“C=UK, O=Disorganized Organization, CN=Joe Bloggs”

2002-11-13 0.9.7c

X509 NAME_add_entry by txt(3) OpenSSL X509 NAME_add_entry_ by txt(3)

X509 _NAME *nm;
nm = X509 _NAME_new();
if (nm == NULL)
/* Some error */
if ({X509_NAME_add_entry_by_ txt(nm, MBSTRING_ASC,
"C", "UK", -1, -1, 0))
[* Error */
if (IX509_NAME_add_entry_by_txt(nm, MBSTRING_ASC,
"0", "Disorganized Organization”, -1, -1, 0))
[* Error */
if (IX509_NAME_add_entry by txt(nm, MBSTRING_ASC,
"CN", "Joe Bloggs", -1, -1, 0))

[* Error */
RETURN VALUES
X509 NAME_add_entry by txt() X509 NAME_add_entry_by OBJ()
X509 NAME_add_entry by NID&hd X509 NAME_add_entry€eturn 1 for success of O if an error

occurred.

X509 NAME_delete_entry@turns either the delete¢609 NAME_ENTRY structure ofNULL if an
error occurred.

BUGS
type can still be set t¢¥_ASN1 APP_CHOOSEto use a different algorithm to determine field types.
Since this form does not understand multicharacter types, performs no length checks and can result in
invalid field types its use is strongly discouraged.

SEE ALSO
ERR_get_erro(3), d2i_ X509 NAME3)

HISTORY

0.9.7c 2002-11-13 401

X509 NAME_ENTRY_get object(3) OpenSSL X509 NAME_ENTRY_get object(3)

NAME
X509 NAME_ENTRY_get object, X509 NAME_ENTRY_get data,
X509 _NAME_ENTRY_set_object, X509 NAME_ENTRY_set_data, X509_NAME_ENTRY_cre-
ate by txt, X509 NAME_ENTRY create by NID, X509 NAME_ENTRY_ create by OBJ -
X509 NAME_ENTRY utility functions

SYNOPSIS
ASN1_OBJECT* X509 NAME_ENTRY_get_object(X509 NAME_ENTRY *ne)ASN1_STRING *
X509 _NAME_ENTRY_get_data(X509_NAME_ENTRY *ne);

int X509_NAME_ENTRY_set_object(X509_NAME_ENTRY *ne,ASN1_OBJECT *obj); int
X509 NAME_ENTRY_set_data(X509 _NAME_ENTRY *ne, int type, unsigned char *bytes, int len);

X509 _NAME_ENTRY *X509_NAME_ENTRY_create_by_txt(X509_NAME_ENTRY **ne, char

*field, int type, unsigned char *bytes, int len); X509 NAME_ENTRY *X509 NAME_ENTRY_cre-
ate_by NID(X509_NAME_ENTRY **ne, int nid, int type,unsigned char *bytes, int len);
X509 _NAME_ENTRY *X509_NAME_ENTRY_create_by_OBJ(X509_NAME_ENTRY **ne,

ASN1_OBJECT*obj, int type,unsigned char *bytes, int len);

DESCRIPTION
X509 NAME_ENTRY_get_objeat}rieves the field name ok in andASN1_OBJECT structure.

X509 NAME_ENTRY_get_data€}rieves the field value afe in andASN1_STRING structure.
X509 NAME_ENTRY_set_objeéls the field name ok to obj.

X509 NAME_ENTRY_set_data@ts the field value afe to string typetype and value determined by
bytesandlen.

X509 NAME_ENTRY_create_hy_txt() X509 NAME_ENTRY_create_by NID() and
X509 NAME_ENTRY create_by OBg@ate and return 2609 NAME_ENTRY structure.
NOTES

X509 NAME_ENTRY_get objecti)d X509 NAME_ENTRY_get datafan be used to examine an
X509 NAME_ENTRY function as returned 509 NAME_get_entry{dr example.

X509 NAME_ENTRY_ create_by txt() X509 NAME_ENTRY_create_by NID() and
X509 NAME_ENTRY_create_by OBdJ@ate and return an
X509 NAME_ENTRY_create_hy_txt() X509 NAME_ENTRY_create_by OBJ()

X509 NAME_ENTRY_ create_by NIRHdX509 NAME_ENTRY_set datafe seldom used in prac-
tice becausX509 NAME_ENTRY structures are almost always partX&09 NAME structures and

the corresponding509 NAME functions are typically used to create and add new entries in a single
operation.

The arguments of these functions support similar options to the similarly nhamed ones of the corre-
spondingX509 NAME functions such aX509 NAME_add_entry by txt§o for exampldype can

be set taBSTRING_ASC but in the case 0K509_set dataghe field name must be set first so the rel-
evant field information can be looked up internally.

RETURN VALUES
SEE ALSO
ERR_get_erro€3), d2i_X509 NAME3), OBJ_nid20bj3),0BJ_nid20ob{3)

HISTORY
TBA

402 2002-11-13 0.9.7c

X509 NAME_get _index_by NID(3) OpenSSL X509 _NAME_get _index_by NID(3)

NAME
X509 NAME_get index by NID, X509 NAME_get index by OBJ, X509 NAME_get entry,
X509 NAME_entry count, X509 NAME_get text by NID, X509 NAME_get text by OBJ -
X509 NAME lookup and enumeration functions

SYNOPSIS
int X509 NAME_get _index_by NID(X509 NAME *name,int nid,int lastpos); int
X509 NAME_get _index_by OBJ(X509 NAME *name,ASN1_OBJECT *obj, int lastpos);

int X509 _NAME_entry _count(X509 NAME *name); X509 NAME_ENTRY
*X509 NAME_get_entry(X509 _NAME *name, int loc);

int X509 NAME_get text by NID(X509 NAME *name, int nid, char *buf,int len); int
X509 NAME_get text by OBJ(X509 NAME *nam&SN1_OBJECT*obj, char *buf,int len);

DESCRIPTION
These functions allow ak509 NAME structure to be examined. Ti&09 NAME structure is the
same as thBlametype defined irRFC2459(and elsewhere) and used for example in certificate subject
and issuer names.

X509 NAME_get index_by NID@nd X509 NAME_get index by OBJ(trieve the next index
matchingnid or obj afterlastpos.lastposshould initially be set to —1. If there are no more entries -1
is returned.

X509 NAME_entry count(®turns the total number of entriesname.

X509 NAME_get_entry(etrieves theXx509 NAME_ENTRY from name corresponding to indeloc.
Acceptable values fdoc run from 0 to (X509 _NAME_entry count(name) — 1). The value returned is
an internal pointer which must not be freed.

X509 NAME_get text by NID(X509 NAME_get text by OBJ@trieve the “text” from the first
entry innamewhich matchesid or obj, if no such entry exists -1 is returned. At mist bytes will

be written and the text written twuf will be null terminated. The length of the output string written is
returned excluding the terminating null. Bbf is <NULL> then the amount of space neededirf
(excluding the final null) is returned.

NOTES
X509 NAME_get text by NID@nd X509 NAME_get text by OBJ@re legacy functions which
have various limitations which make them of minimal use in practice. They can only find the first
matching entry and will copy the contents of the field verbatim: this can be highly confusing if the tar-
get is a muticharacter string type like a BMPString or a UTF8String.

For a more general solutiok509 NAME_get _index_by NIDgy X509 NAME_get_index_by OBJ()
should be used followed b¥509 NAME_get _entry@n any matching indices and then the various
X509 NAME_ENTRY utility functions on the result.

EXAMPLES
Process all entries:

int i;

X509 _NAME_ENTRY *e;

for (i=0; i < X509 _NAME_entry_count(nm); i++)
{
e = X509 NAME_get entry(nm, i);
/* Do something with e */

}

Process all commonName entries:

int loc;
X509 NAME_ENTRY *g;

0.9.7c 2002-11-13 403

X509 NAME_get _index_by NID(3) OpenSSL X509 _NAME_get _index_by NID(3)

loc = -1;
for (;;)
{
lastpos = X509 _NAME_get_index_by NID(nm, NID_commonName, lastpos);
if (lastpos == -1)
break;
e = X509 NAME_get entry(nm, lastpos);
/* Do something with e */
}
RETURN VALUES
X509 NAME_get_index_by NIDghd X509 NAME_get_index_by OBJ€turn the index of the next
matching entry or -1 if not found.
X509 NAME_entry count(®turns the total number of entries.
X509 NAME_get_entry(eturns arX509 NAME pointer to the requested entryLL if the index
is invalid.
SEE ALSO
ERR_get_erro(3), d2i_X509_NAME3)
HISTORY
TBA

404 2002-11-13 0.9.7c

X509 NAME_print_ex(3) OpenSSL X509 _NAME_print_ex(3)

NAME

X509 NAME_print_ex, X509 NAME_print_ex fp, X509 NAME_print, X509 NAME_oneline -
X509 NAME printing routines.

SYNOPSIS

#include <openssl/x509.h>

int X509 NAME_print_ex(BIO *out, X509 _NAME *nm, int indent, unsigned long flags);
int X509 NAME_print_ex_fp(FILE *fp, X509 NAME *nm, int indent, unsigned long flags);
char * X509 _NAME_oneline(X509_NAME *a,char *buf,int size);

int X509 NAME_print(BIO *bp, X509 NAME *name, int obase);

DESCRIPTION

X509 NAME_print_ex(prints a human readable versionnwh to BIO out. Each line (for multiline
formats) is indented bindent spaces. The output format can be extensively customised by use of the
flagsparameter.

X509 NAME_print_ex_fp¥ identical toX509 NAME_print_ex(@xcept the output is written ®ILE
pointerfp.

X509 NAME_onelinerints anASCII version ofa to buf. At mostsizebytes will be written. Ibuf is
NULL then a buffer is dynamically allocated and returned, othetwites returned.

X509 NAME_print(prints outnameto bp indenting each line bgbasecharacters. Multiple lines are
used if the output (including indent) exceeds 80 characters.

NOTES

0.9.7c

The functionsX509 _NAME_oneline@nd X509 _NAME_print(Jare legacy functions which produce a
non standard output form, they don't handle multi character fields and have various quirks and incon-
sistencies. Their use is strongly discouraged in new applications.

Although there are a large number of possible flags for most purp0¢eSLAG_ONELINE ,

XN_FLAG_MULTILINE or XN_FLAG_RFC2253 will suffice. As noted on the
ASN1 STRING_print_¢8) manual page fouTF8 terminals theASN1_STRFLAGS_ESC_MSBshould

be unset: so for exampkN_FLAG_ONELINE & "ASN1 _STRFLAGS ESC_MSBwould be used.

The complete set of the flags supportedKb®9 NAME_print_ex(s listed below.
Several options can be ored together.

The options XN_FLAG_SEP_COMMA_PLUS, XN_FLAG_SEP_CPLUS_SPG
XN_FLAG_SEP_SPLUS_SPCand XN_FLAG_SEP_MULTILINE determine the field separators to use.

Two distinct separators are used between distinct RelativeDistinguishedName components and separate
values in the samRDN for a multi-valuedrRDN. Multi-valued RDNs are currently very rare so the sec-

ond separator will hardly ever be used.

XN_FLAG_SEP_COMMA_PLUS uses comma and plus as separatité. FLAG_SEP_CPLUS_SPC

uses comma and plus with spaces: this is more readable that plain comma and plus.
XN_FLAG_SEP_SPLUS_SPCuses spaced semicolon and ploé_FLAG_SEP_MULTILINE uses
spaced newline and plus respectively.

If XN_FLAG_DN_REYV is set the whol®N is printed in reversed order.

The fieldsXN_FLAG_FN_SN, XN_FLAG_FN_LN, XN_FLAG_FN_OID, XN_FLAG_FN_NONE deter-
mine how a field name is displayed. It will use the short nameal)gthe long name (e.g. common-
Name) always us®ID numerical form (normally OIDs are only used if the field name is not recog-
nised) and no field name respectively.

If XN_FLAG_SPC_EQis set then spaces will be placed around the '=' character separating field names
and values.

If XN_FLAG_DUMP_UNKNOWN_FIELDS is set then the encoding of unknown fields is printed instead
of the values.

If XN_FLAG_FN_ALIGN is set then field names are padded to 20 characters: this is only of use for
multiline format.

Additionally all the options supported BSN1 STRING_print_ex¢an be used to control how each

2002-10-20 405

X509 NAME_print_ex(3) OpenSSL X509 _NAME_print_ex(3)

field value is displayed.
In addition a number options can be set for commonly used formats.

XN_FLAG_RFC2253 sets options which produce an output compatible Ri#02253it is equialent to:
ASN1_STRFLGS RFC2253 [XN_FLAG_SEP COMMA _PLUS O XN_FLAG DN _REV 0O
XN_FLAG_FN_SN OXN_FLAG_DUMP_UNKNOWN_FIELDS

XN_FLAG_ONELINE is a more readable one line format it is the same as:
ASN1_STRFLGS_RFC2253 0 ASN1_STRFLGS_ESC_QUOTE O XN_FLAG_SEP_CPLUS_SPC O
XN_FLAG_SPC_EQUOXN_FLAG_FN_SN

XN_FLAG_MULTILINE is a multiline format is is the same as:

ASN1_STRFLGS_ESC_CTRL [ASN1_STRFLGS ESC_MSB [XN_FLAG_SEP_MULTILINE O
XN_FLAG_SPC_EQUXN_FLAG_FN_LN OXN_FLAG_FN_ALIGN

XN_FLAG_COMPAT wuses a format identical toX509 NAME_print() in fact it calls
X509 NAME_print()nternally.

SEE ALSO
ASN1 STRING_print_¢8)

HISTORY
TBA

406 2002-10-20 0.9.7c

X509 new(3) OpenSSL X509 new(3)

NAME
X509 new, X509 free — X509 certificate ASN1 allocation functions

SYNOPSIS
X509 *X509 new(void);
void X509 _free(X509 *a);

DESCRIPTION
The X509ASN1 allocation routines, allocate and free an X509 structure, which represents an X509 cer-
tificate.

X509 new(pllocates and initializes a X509 structure.
X509 free(frees up theX509 structurea.

RETURN VALUES
If the allocation fails,X509_ new()returnsNULL and sets an error code that can be obtained by
ERR_get_erro(3). Otherwise it returns a pointer to the newly allocated structure.

X509 free(yeturns no value.

SEE ALSO
ERR_get_erro(3), d2i_X5093)

HISTORY
X509 new(pndX509 free(are available in all versions of SSLeay and OpenSSL.

0.9.7c 2002-11-13 407

CONFIG(5) OpenSSL CONFIG(5)

NAME

config — OpenSSL CONF library configuration files

DESCRIPTION

The OpenSSICONF library can be used to read configuration files. It is used for the OpenSSL master
configuration fileopenssl.cnfand in a few other places lik&PKAC files and certificate extension files
for thex509 utility.

A configuration file is divided into a number of sections. Each section starts with[@dicon_name
] and ends when a new section is started or end of file is reached. A section name can consist of
alphanumeric characters and underscores.

The first section of a configuration file is special and is referred to aefdalt section this is usually
unnamed and is from the start of file until the first named section. When a name is being looked up it is
first looked up in a named section (if any) and then the default section.

The environment is mapped onto a section calied.
Comments can be included by preceding them with ttfearacter

Each section in a configuration file consists of a number of name and value pairs of the form
name=value

Thenamestring can contain any alphanumeric characters as well as a few punctuation symbols such as
.,;and_.

The value string consists of the string following tlecharacter until end of line with any leading and
trailing white space removed.

The value string undergoes variable expansion. This can be done by including tBedoon${var}:

this will substitute the value of the named variable in the current section. It is also possible to substitute
a value from another section using the syifisection::nameor ${section::name}. By using the form
$ENV::name environment variables can be substituted. It is also possible to assign values to environ-
ment variables by using the narB®&lV::name, this will work if the program looks up environment
variables using theONF library instead of callingetenv() directly.

It is possible to escape certain characters by using any kind of quote\ahtracter. By making the
last character of a line\aa value string can be spread across multiple lines. In addition the sequences
\n, \r, \b and\t are recognized.

NOTES

If a configuration file attempts to expand a variable that doesn’t exist then an error is flagged and the
file will not load. This can happen if an attempt is made to expand an environment variable that doesn't
exist. For example the default OpenSSL master configuration file used the vealogiBfwhich may

not be defined on non Unix systems.

This can be worked around by includinglefault section to provide a default value: then if the envi-
ronment lookup fails the default value will be used instead. For this to work properly the default value
must be defined earlier in the configuration file than the expansion. SERAKKPLES section for an
example of how to do this.

If the same variable exists in the same section then all but the last value will be silently ignored. In cer-
tain circumstances such as with DNs the same field may occur multiple times. This is usually worked
around by ignoring any characters before an initead).

1.0U="My first OU"
2.0U="My Second OU"

EXAMPLES

408

Here is a sample configuration file using some of the features mentioned above.
This is the default section.

HOME=/temp
RANDFILE= ${ENV::HOME}/.rnd
configdir=$ENV::HOME/config

2000-02-03 0.9.7c

CONFIG(5) OpenSSL CONFIG(5)

BUGS

[s ection_one]
We are now in section one.

Quotes permit leading and trailing whitespace
any =" any variable name "

other = A string that can \
cover several lines \
by including \\ characters

message = Hello World\n
[section_two]
greeting = $section_one::message
This next example shows how to expand environment variables safely.

Suppose you want a variable caltegpfile to refer to a temporary filename. The directory it is placed

in can determined by the tHiEMP or TMP environment variables but they may not be set to any value

at all. If you just include the environment variable names and the variable doesn't exist then this will
cause an error when an attempt is made to load the configuration file. By making use of the default sec-
tion both values can be looked up withMP taking priority andtmp used if neither is defined:

TMP=/tmp

The above value is used if TMP isn't in the environment
TEMP=$ENV:.:TMP

The above value is used if TEMP isn't in the environment
tmpfile=${ENV:: TEMP}/tmp.filename

Currently there is no way to include characters using the wotal form. Strings are all null termi-
nated so nulls cannot form part of the value.

The escaping isn’t quite right: if you want to use sequencesnlikeu can’t use any quote escaping on
the same line.

Files are loaded in a single pass. This means that an variable expansion will only work if the variables
referenced are defined earlier in the file.

SEE ALSO

0.9.7c

x509(1), req(1), ca(1)

2000-02-03 409

DES_MODES(7) OpenSSL DES_MODES(7)

NAME
Modes of DES - the variants of DES and other crypto algorithms of OpenSSL

DESCRIPTION
Several crypto algorithms for OpenSSL can be used in a number of modes. Those are used for using
block ciphers in a way similar to stream ciphers, among other things.

OVERVIEW
Electronic Codebook Mode ECB)

Normally, this is found as the functi@bgorithm_ecb_encrypt()
» 64 bits are enciphered at a time.
e The order of the blocks can be rearranged without detection.

e The same plaintext block always produces the same ciphertext block (for the same key) making it
vulnerable to a 'dictionary attack’.

» An error will only affect one ciphertext block.

Cipher Block Chaining Mode (CBC)

Normally, this is found as the functiaigorithm_cbc_encrypt() Be aware thatles_cbc_encrypt(s
not reallyDES CBC(it does not update tH&); usedes_nchc_encrypt{histead.

» amultiple of 64 bits are enciphered at a time.

e The CBC mode produces the same ciphertext whenever the same plaintext is encrypted using the
same key and starting variable.

» The chaining operation makes the ciphertext blocks dependent on the current and all preceding plain-
text blocks and therefore blocks can not be rearranged.

» The use of different starting variables prevents the same plaintext enciphering to the same ciphertext.
» An error will affect the current and the following ciphertext blocks.

Cipher Feedback Mode CFB)
Normally, this is found as the functi@ahgorithm_cfb_encrypt()
» anumber of bits (j) <= 64 are enciphered at a time.

e The CFB mode produces the same ciphertext whenever the same plaintext is encrypted using the
same key and starting variable.

» The chaining operation makes the ciphertext variables dependent on the current and all preceding
variables and therefore j—bit variables are chained together and can not be rearranged.

» The use of different starting variables prevents the same plaintext enciphering to the same ciphertext.

» The strength of th€FB mode depends on the size of k (maximal if j == k). In my implementation
this is always the case.

» Selection of a small value for j will require more cycles through the encipherment algorithm per unit
of plaintext and thus cause greater processing overheads.

» Only multiples of j bits can be enciphered.
» An error will affect the current and the following ciphertext variables.

Output Feedback Mode OFB)
Normally, this is found as the functi@abgorithm_ofb_encrypt()
» anumber of bits (j) <= 64 are enciphered at a time.

» TheOFB mode produces the same ciphertext whenever the same plaintext enciphered using the same
key and starting variable. More over, in td€B mode the same key stream is produced when the
same key and start variable are used. Consequently, for security reasons a specific start variable
should be used only once for a given key.

410 2002-03-05 0.9.7c

DES_MODES(7) OpenSSL DES_MODES(7)

The absence of chaining makes @B more vulnerable to specific attacks.

The use of different start variables values prevents the same plaintext enciphering to the same cipher-
text, by producing different key streams.

Selection of a small value for j will require more cycles through the encipherment algorithm per unit
of plaintext and thus cause greater processing overheads.

Only multiples of j bits can be enciphered.

OFB mode of operation does not extend ciphertext errors in the resultant plaintext output. Every bit
error in the ciphertext causes only one bit to be in error in the deciphered plaintext.

OFB mode is not self-synchronizing. If the two operation of encipherment and decipherment get out
of synchronism, the system needs to be re—-initialized.

Each re-initialization should use a value of the start variable different from the start variable values
used before with the same key. The reason for this is that an identical bit stream would be produced
each time from the same parameters. This would be susceptible to a '’known plaintext’ attack.

Triple ECB Mode
Normally, this is found as the functi@hgorithm_ecb3_encrypt()

Encrypt with key1, decrypt with key2 and encrypt with key3 again.

As for ECB encryption but increases the key length to 168 bits. There are theoretic attacks that can
be used that make the effective key length 112 bits, but this attack also requires 2756 blocks of mem-
ory, not very likely, even for thRSA.

If both keys are the same it is equivalent to encrypting once with just one key.

If the first and last key are the same, the key length is 112 bits. There are attacks that could reduce
the effective key strength to only slightly more than 56 bits, but these require a lot of memory.

If all 3 keys are the same, this is effectively the same as normal ecb mode.

Triple CBC Mode
Normally, this is found as the functi@hgorithm_ede3 cbc_encrypt()

NOTES

Encrypt with key1, decrypt with key2 and then encrypt with key3.

As for CBC encryption but increases the key length to 168 bits with the same restrictions as for triple
ech mode.

This text was been written in large parts by Eric Young in his original documentation for SSLeay, the
predecessor of OpenSSL. In turn, he attributed it to:

AS 2805.5.2

Australian Standard

Electronic funds transfer - Requirements for interfaces,

Part 5.2: Modes of operation for an n-bit block cipher algorithm
Appendix A

SEE ALSO
blowfish(3), des(3), idea(3), rc2(3)

0.9.7c

2002-03-05 411

	ASN1PARSE (1)
	CA (1)
	CA.PL (1)
	CIPHERS (1)
	CRL (1)
	CRL2PKCS7 (1)
	DGST (1)
	DHPARAM (1)
	DSA (1)
	DSAPARAM (1)
	ENC (1)
	GENDSA (1)
	GENRSA (1)
	NSEQ (1)
	OCSP (1)
	OPENSSL (1)
	PASSWD (1)
	PKCS12 (1)
	PKCS7 (1)
	PKCS8 (1)
	RAND (1)
	REQ (1)
	RSA (1)
	RSAUTL (1)
	S_CLIENT (1)
	S_SERVER (1)
	SESS_ID (1)
	SMIME (1)
	SPEED (1)
	SPKAC (1)
	VERIFY (1)
	VERSION (1)
	X509 (1)
	ASN1_OBJECT_new (3)
	ASN1_STRING_length (3)
	ASN1_STRING_new (3)
	ASN1_STRING_print_ex (3)
	bio (3)
	BIO_ctrl (3)
	BIO_f_base64 (3)
	BIO_f_buffer (3)
	BIO_f_cipher (3)
	BIO_f_md (3)
	BIO_f_null (3)
	BIO_f_ssl (3)
	BIO_find_type (3)
	BIO_new (3)
	BIO_push (3)
	BIO_read (3)
	BIO_s_accept (3)
	BIO_s_bio (3)
	BIO_s_connect (3)
	BIO_s_fd (3)
	BIO_s_file (3)
	BIO_s_mem (3)
	BIO_s_null (3)
	BIO_s_socket (3)
	BIO_set_callback (3)
	BIO_should_retry (3)
	blowfish (3)
	bn (3)
	BN_add (3)
	BN_add_word (3)
	BN_bn2bin (3)
	BN_cmp (3)
	BN_copy (3)
	BN_CTX_new (3)
	BN_CTX_start (3)
	BN_generate_prime (3)
	bn_internal (3)
	BN_mod_inverse (3)
	BN_mod_mul_montgomery (3)
	BN_mod_mul_reciprocal (3)
	BN_new (3)
	BN_num_bytes (3)
	BN_rand (3)
	BN_set_bit (3)
	BN_swap (3)
	BN_zero (3)
	buffer (3)
	crypto (3)
	CRYPTO_set_ex_data (3)
	d2i_ASN1_OBJECT (3)
	d2i_DHparams (3)
	d2i_DSAPublicKey (3)
	d2i_PKCS8PrivateKey (3)
	d2i_RSAPublicKey (3)
	d2i_SSL_SESSION (3)
	d2i_X509 (3)
	d2i_X509_ALGOR (3)
	d2i_X509_CRL (3)
	d2i_X509_NAME (3)
	d2i_X509_REQ (3)
	d2i_X509_SIG (3)
	des (3)
	dh (3)
	DH_generate_key (3)
	DH_generate_parameters (3)
	DH_get_ex_new_index (3)
	DH_new (3)
	DH_set_method (3)
	DH_size (3)
	dsa (3)
	DSA_do_sign (3)
	DSA_dup_DH (3)
	DSA_generate_key (3)
	DSA_generate_parameters (3)
	DSA_get_ex_new_index (3)
	DSA_new (3)
	DSA_set_method (3)
	DSA_SIG_new (3)
	DSA_sign (3)
	DSA_size (3)
	engine (3)
	err (3)
	ERR_clear_error (3)
	ERR_error_string (3)
	ERR_get_error (3)
	ERR_GET_LIB (3)
	ERR_load_crypto_strings (3)
	ERR_load_strings (3)
	ERR_print_errors (3)
	ERR_put_error (3)
	ERR_remove_state (3)
	evp (3)
	EVP_DigestInit (3)
	EVP_EncryptInit (3)
	EVP_OpenInit (3)
	EVP_PKEY_new (3)
	EVP_PKEY_set1_RSA (3)
	EVP_SealInit (3)
	EVP_SignInit (3)
	EVP_VerifyInit (3)
	lh_stats (3)
	lhash (3)
	OBJ_nid2obj (3)
	OpenSSL_add_all_algorithms (3)
	OPENSSL_VERSION_NUMBER (3)
	PKCS12_create (3)
	PKCS12_parse (3)
	PKCS7_decrypt (3)
	PKCS7_encrypt (3)
	PKCS7_sign (3)
	PKCS7_verify (3)
	rand (3)
	RAND_add (3)
	RAND_bytes (3)
	RAND_cleanup (3)
	RAND_egd (3)
	RAND_load_file (3)
	RAND_set_rand_method (3)
	ripemd (3)
	rsa (3)
	RSA_blinding_on (3)
	RSA_check_key (3)
	RSA_generate_key (3)
	RSA_get_ex_new_index (3)
	RSA_new (3)
	RSA_padding_add_PKCS1_type_1 (3)
	RSA_print (3)
	RSA_private_encrypt (3)
	RSA_public_encrypt (3)
	RSA_set_method (3)
	RSA_sign (3)
	RSA_sign_ASN1_OCTET_STRING (3)
	RSA_size (3)
	sha (3)
	SMIME_read_PKCS7 (3)
	SMIME_write_PKCS7 (3)
	SSL_accept (3)
	SSL_alert_type_string (3)
	SSL_CIPHER_get_name (3)
	SSL_clear (3)
	SSL_COMP_add_compression_method (3)
	SSL_connect (3)
	SSL_CTX_add_extra_chain_cert (3)
	SSL_CTX_add_session (3)
	SSL_CTX_ctrl (3)
	SSL_CTX_flush_sessions (3)
	SSL_CTX_free (3)
	SSL_CTX_get_ex_new_index (3)
	SSL_CTX_get_verify_mode (3)
	SSL_CTX_load_verify_locations (3)
	SSL_CTX_new (3)
	SSL_CTX_sess_number (3)
	SSL_CTX_sess_set_cache_size (3)
	SSL_CTX_sess_set_get_cb (3)
	SSL_CTX_sessions (3)
	SSL_CTX_set_cert_store (3)
	SSL_CTX_set_cert_verify_callback (3)
	SSL_CTX_set_cipher_list (3)
	SSL_CTX_set_client_CA_list (3)
	SSL_CTX_set_client_cert_cb (3)
	SSL_CTX_set_default_passwd_cb (3)
	SSL_CTX_set_generate_session_id (3)
	SSL_CTX_set_info_callback (3)
	SSL_CTX_set_max_cert_list (3)
	SSL_CTX_set_mode (3)
	SSL_CTX_set_msg_callback (3)
	SSL_CTX_set_options (3)
	SSL_CTX_set_quiet_shutdown (3)
	SSL_CTX_set_session_cache_mode (3)
	SSL_CTX_set_session_id_context (3)
	SSL_CTX_set_ssl_version (3)
	SSL_CTX_set_timeout (3)
	SSL_CTX_set_tmp_dh_callback (3)
	SSL_CTX_set_tmp_rsa_callback (3)
	SSL_CTX_set_verify (3)
	SSL_CTX_use_certificate (3)
	SSL_do_handshake (3)
	SSL_free (3)
	SSL_get_ciphers (3)
	SSL_get_client_CA_list (3)
	SSL_get_current_cipher (3)
	SSL_get_default_timeout (3)
	SSL_get_error (3)
	SSL_get_ex_data_X509_STORE_CTX_idx (3)
	SSL_get_ex_new_index (3)
	SSL_get_fd (3)
	SSL_get_peer_cert_chain (3)
	SSL_get_peer_certificate (3)
	SSL_get_rbio (3)
	SSL_get_session (3)
	SSL_get_SSL_CTX (3)
	SSL_get_verify_result (3)
	SSL_get_version (3)
	SSL_library_init (3)
	SSL_load_client_CA_file (3)
	SSL_new (3)
	SSL_pending (3)
	SSL_read (3)
	SSL_rstate_string (3)
	SSL_SESSION_free (3)
	SSL_SESSION_get_ex_new_index (3)
	SSL_SESSION_get_time (3)
	SSL_session_reused (3)
	SSL_set_bio (3)
	SSL_set_connect_state (3)
	SSL_set_fd (3)
	SSL_set_session (3)
	SSL_set_shutdown (3)
	SSL_set_verify_result (3)
	SSL_shutdown (3)
	SSL_state_string (3)
	SSL_want (3)
	SSL_write (3)
	threads (3)
	ui (3)
	ui_compat (3)
	X509_NAME_add_entry_by_txt (3)
	X509_NAME_ENTRY_get_object (3)
	X509_NAME_get_index_by_NID (3)
	X509_NAME_print_ex (3)
	X509_new (3)
	CONFIG (5)
	DES_MODES (7)

